mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 10:58:30 -04:00
266 lines
11 KiB
C++
266 lines
11 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AP_MotorsSingle.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
*/
|
|
|
|
#include <AP_HAL.h>
|
|
#include <AP_Math.h>
|
|
#include "AP_MotorsSingle.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
const AP_Param::GroupInfo AP_MotorsSingle::var_info[] PROGMEM = {
|
|
// 0 was used by TB_RATIO
|
|
|
|
// @Param: TCRV_ENABLE
|
|
// @DisplayName: Thrust Curve Enable
|
|
// @Description: Controls whether a curve is used to linearize the thrust produced by the motors
|
|
// @User: Advanced
|
|
// @Values: 0:Disabled,1:Enable
|
|
AP_GROUPINFO("TCRV_ENABLE", 1, AP_MotorsSingle, _throttle_curve_enabled, THROTTLE_CURVE_ENABLED),
|
|
|
|
// @Param: TCRV_MIDPCT
|
|
// @DisplayName: Thrust Curve mid-point percentage
|
|
// @Description: Set the pwm position that produces half the maximum thrust of the motors
|
|
// @User: Advanced
|
|
// @Range: 20 80
|
|
// @Increment: 1
|
|
AP_GROUPINFO("TCRV_MIDPCT", 2, AP_MotorsSingle, _throttle_curve_mid, THROTTLE_CURVE_MID_THRUST),
|
|
|
|
// @Param: TCRV_MAXPCT
|
|
// @DisplayName: Thrust Curve max thrust percentage
|
|
// @Description: Set to the lowest pwm position that produces the maximum thrust of the motors. Most motors produce maximum thrust below the maximum pwm value that they accept.
|
|
// @User: Advanced
|
|
// @Range: 20 80
|
|
// @Increment: 1
|
|
AP_GROUPINFO("TCRV_MAXPCT", 3, AP_MotorsSingle, _throttle_curve_max, THROTTLE_CURVE_MAX_THRUST),
|
|
|
|
// @Param: SPIN_ARMED
|
|
// @DisplayName: Motors always spin when armed
|
|
// @Description: Controls whether motors always spin when armed (must be below THR_MIN)
|
|
// @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast
|
|
// @User: Standard
|
|
AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsSingle, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED),
|
|
|
|
// @Param: REV_ROLL
|
|
// @DisplayName: Reverse roll feedback
|
|
// @Description: Ensure the feedback is negative
|
|
// @Values: -1:Opposite direction,1:Same direction
|
|
AP_GROUPINFO("REV_ROLL", 6, AP_MotorsSingle, _rev_roll, AP_MOTORS_SING_POSITIVE),
|
|
|
|
// @Param: REV_PITCH
|
|
// @DisplayName: Reverse roll feedback
|
|
// @Description: Ensure the feedback is negative
|
|
// @Values: -1:Opposite direction,1:Same direction
|
|
AP_GROUPINFO("REV_PITCH", 7, AP_MotorsSingle, _rev_pitch, AP_MOTORS_SING_POSITIVE),
|
|
|
|
// @Param: REV_ROLL
|
|
// @DisplayName: Reverse roll feedback
|
|
// @Description: Ensure the feedback is negative
|
|
// @Values: -1:Opposite direction,1:Same direction
|
|
AP_GROUPINFO("REV_YAW", 8, AP_MotorsSingle, _rev_yaw, AP_MOTORS_SING_POSITIVE),
|
|
|
|
// @Param: SV_SPEED
|
|
// @DisplayName: Servo speed
|
|
// @Description: Servo update speed
|
|
// @Values: -1:Opposite direction,1:Same direction
|
|
AP_GROUPINFO("SV_SPEED", 9, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
// init
|
|
void AP_MotorsSingle::Init()
|
|
{
|
|
// call parent Init function to set-up throttle curve
|
|
AP_Motors::Init();
|
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7)
|
|
set_update_rate(_speed_hz);
|
|
|
|
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
|
|
motor_enabled[AP_MOTORS_MOT_7] = true;
|
|
|
|
// we set four servos to angle
|
|
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
|
|
_servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
|
|
_servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
|
|
_servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
|
|
|
|
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc)
|
|
RC_Channel_aux::disable_aux_channel(CH_7);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7)
|
|
uint32_t mask =
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]) ;
|
|
hal.rcout->set_freq(mask, _servo_speed);
|
|
uint32_t mask2 = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]);
|
|
hal.rcout->set_freq(mask2, _speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsSingle::enable()
|
|
{
|
|
// enable output channels
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]));
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]));
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]));
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]));
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]));
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motor and trim values to the servos
|
|
void AP_MotorsSingle::output_min()
|
|
{
|
|
// send minimum value to each motor
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_trim);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_trim);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), _rc_throttle.radio_min);
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
void AP_MotorsSingle::output_armed()
|
|
{
|
|
int16_t out_min = _rc_throttle.radio_min + _min_throttle;
|
|
int16_t motor_out; // main motor output
|
|
|
|
// Throttle is 0 to 1000 only
|
|
_rc_throttle.servo_out = constrain_int16(_rc_throttle.servo_out, 0, _max_throttle);
|
|
|
|
// capture desired throttle from receiver
|
|
_rc_throttle.calc_pwm();
|
|
|
|
// if we are not sending a throttle output, we cut the motors
|
|
if(_rc_throttle.servo_out == 0) {
|
|
// range check spin_when_armed
|
|
if (_spin_when_armed < 0) {
|
|
_spin_when_armed = 0;
|
|
}
|
|
if (_spin_when_armed > _min_throttle) {
|
|
_spin_when_armed = _min_throttle;
|
|
}
|
|
|
|
motor_out = _rc_throttle.radio_min + _spin_when_armed;
|
|
}else{
|
|
//motor
|
|
motor_out = _rc_throttle.radio_out;
|
|
|
|
// adjust for throttle curve
|
|
if( _throttle_curve_enabled ) {
|
|
motor_out = _throttle_curve.get_y(motor_out);
|
|
}
|
|
|
|
// ensure motor doesn't drop below a minimum value and stop
|
|
motor_out = max(motor_out, out_min);
|
|
}
|
|
|
|
// front servo
|
|
_servo1.servo_out = _rev_roll*_rc_roll.servo_out + _rev_yaw*_rc_yaw.servo_out;
|
|
// right servo
|
|
_servo2.servo_out = _rev_pitch*_rc_pitch.servo_out + _rev_yaw*_rc_yaw.servo_out;
|
|
// rear servo
|
|
_servo3.servo_out = -_rev_roll*_rc_roll.servo_out + _rev_yaw*_rc_yaw.servo_out;
|
|
// left servo
|
|
_servo4.servo_out = -_rev_pitch*_rc_pitch.servo_out + _rev_yaw*_rc_yaw.servo_out;
|
|
|
|
_servo1.calc_pwm();
|
|
_servo2.calc_pwm();
|
|
_servo3.calc_pwm();
|
|
_servo4.calc_pwm();
|
|
|
|
// send output to each motor
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_out);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_out);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), motor_out);
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsSingle::output_disarmed()
|
|
{
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
}
|
|
|
|
// output_test - spin each motor for a moment to allow the user to confirm the motor order and spin direction
|
|
void AP_MotorsSingle::output_test()
|
|
{
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
|
|
// spin main motor
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), _rc_throttle.radio_min + _min_throttle);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), _rc_throttle.radio_min);
|
|
hal.scheduler->delay(2000);
|
|
|
|
// flap servo 1
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_min);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_max);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim);
|
|
hal.scheduler->delay(2000);
|
|
|
|
// flap servo 2
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_min);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_max);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim);
|
|
hal.scheduler->delay(2000);
|
|
|
|
// flap servo 3
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_min);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_max);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_trim);
|
|
hal.scheduler->delay(2000);
|
|
|
|
// flap servo 4
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_min);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_max);
|
|
hal.scheduler->delay(1000);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_trim);
|
|
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
}
|