mirror of https://github.com/ArduPilot/ardupilot
484 lines
14 KiB
C++
484 lines
14 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
simulator connector for XPlane
|
|
*/
|
|
|
|
#include "SIM_XPlane.h"
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <DataFlash/DataFlash.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
namespace SITL {
|
|
|
|
XPlane::XPlane(const char *home_str, const char *frame_str) :
|
|
Aircraft(home_str, frame_str)
|
|
{
|
|
use_time_sync = false;
|
|
const char *colon = strchr(frame_str, ':');
|
|
if (colon) {
|
|
xplane_ip = colon+1;
|
|
}
|
|
|
|
heli_frame = (strstr(frame_str, "-heli") != nullptr);
|
|
|
|
socket_in.bind("0.0.0.0", bind_port);
|
|
printf("Waiting for XPlane data on UDP port %u and sending to port %u\n",
|
|
(unsigned)bind_port, (unsigned)xplane_port);
|
|
|
|
// XPlane sensor data is not good enough for EKF. Use fake EKF by default
|
|
AP_Param::set_default_by_name("AHRS_EKF_TYPE", 10);
|
|
AP_Param::set_default_by_name("INS_GYR_CAL", 0);
|
|
}
|
|
|
|
/*
|
|
change what data is requested from XPlane. This saves the user from
|
|
having to setup the data screen correctly
|
|
*/
|
|
void XPlane::select_data(uint64_t usel_mask, uint64_t sel_mask)
|
|
{
|
|
struct PACKED {
|
|
uint8_t marker[5] { 'D', 'S', 'E', 'L', '0' };
|
|
uint32_t data[8] {};
|
|
} dsel;
|
|
uint8_t count = 0;
|
|
for (uint8_t i=0; i<64 && count<8; i++) {
|
|
if ((((uint64_t)1)<<i) & sel_mask) {
|
|
dsel.data[count++] = i;
|
|
printf("i=%u\n", (unsigned)i);
|
|
}
|
|
}
|
|
if (count != 0) {
|
|
socket_out.send(&dsel, sizeof(dsel));
|
|
printf("Selecting %u data types 0x%llx\n", (unsigned)count, (unsigned long long)sel_mask);
|
|
}
|
|
|
|
struct PACKED {
|
|
uint8_t marker[5] { 'U', 'S', 'E', 'L', '0' };
|
|
uint32_t data[8] {};
|
|
} usel;
|
|
count = 0;
|
|
for (uint8_t i=0; i<64 && count<8; i++) {
|
|
if ((((uint64_t)1)<<i) & usel_mask) {
|
|
usel.data[count++] = i;
|
|
printf("i=%u\n", (unsigned)i);
|
|
}
|
|
}
|
|
if (count != 0) {
|
|
socket_out.send(&usel, sizeof(usel));
|
|
printf("De-selecting %u data types 0x%llx\n", (unsigned)count, (unsigned long long)usel_mask);
|
|
}
|
|
}
|
|
|
|
/*
|
|
receive data from X-Plane via UDP
|
|
*/
|
|
bool XPlane::receive_data(void)
|
|
{
|
|
uint8_t pkt[10000];
|
|
uint8_t *p = &pkt[5];
|
|
const uint8_t pkt_len = 36;
|
|
uint64_t data_mask = 0;
|
|
const uint64_t one = 1U;
|
|
const uint64_t required_mask = (one<<Times | one<<LatLonAlt | one<<Speed | one<<PitchRollHeading |
|
|
one<<LocVelDistTraveled | one<<AngularVelocities | one<<Gload |
|
|
one << Joystick1 | one << ThrottleCommand | one << Trim |
|
|
one << PropPitch | one << EngineRPM | one << PropRPM | one << Generator |
|
|
one << Mixture);
|
|
Location loc {};
|
|
Vector3f pos;
|
|
uint32_t wait_time_ms = 1;
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
// if we are about to get another frame from X-Plane then wait longer
|
|
if (xplane_frame_time > wait_time_ms &&
|
|
now+1 >= last_data_time_ms + xplane_frame_time) {
|
|
wait_time_ms = 10;
|
|
}
|
|
ssize_t len = socket_in.recv(pkt, sizeof(pkt), wait_time_ms);
|
|
|
|
if (len < pkt_len+5 || memcmp(pkt, "DATA@", 5) != 0) {
|
|
// not a data packet we understand
|
|
goto failed;
|
|
}
|
|
len -= 5;
|
|
|
|
if (!connected) {
|
|
// we now know the IP X-Plane is using
|
|
uint16_t port;
|
|
socket_in.last_recv_address(xplane_ip, port);
|
|
socket_out.connect(xplane_ip, xplane_port);
|
|
connected = true;
|
|
printf("Connected to %s:%u\n", xplane_ip, (unsigned)xplane_port);
|
|
}
|
|
|
|
while (len >= pkt_len) {
|
|
const float *data = (const float *)p;
|
|
uint8_t code = p[0];
|
|
// keep a mask of what codes we have received
|
|
if (code < 64) {
|
|
data_mask |= (((uint64_t)1) << code);
|
|
}
|
|
switch (code) {
|
|
case Times: {
|
|
uint64_t tus = data[3] * 1.0e6f;
|
|
if (tus + time_base_us <= time_now_us) {
|
|
uint64_t tdiff = time_now_us - (tus + time_base_us);
|
|
if (tdiff > 1e6f) {
|
|
printf("X-Plane time reset %lu\n", (unsigned long)tdiff);
|
|
}
|
|
time_base_us = time_now_us - tus;
|
|
}
|
|
uint64_t tnew = time_base_us + tus;
|
|
//uint64_t dt = tnew - time_now_us;
|
|
//printf("dt %u\n", (unsigned)dt);
|
|
time_now_us = tnew;
|
|
break;
|
|
}
|
|
|
|
case LatLonAlt: {
|
|
loc.lat = data[1] * 1e7;
|
|
loc.lng = data[2] * 1e7;
|
|
loc.alt = data[3] * FEET_TO_METERS * 100.0f;
|
|
float hagl = data[4] * FEET_TO_METERS;
|
|
ground_level = loc.alt * 0.01f - hagl;
|
|
break;
|
|
}
|
|
|
|
case Speed:
|
|
airspeed = data[2] * KNOTS_TO_METERS_PER_SECOND;
|
|
airspeed_pitot = airspeed;
|
|
break;
|
|
|
|
case AoA:
|
|
// ignored
|
|
break;
|
|
|
|
case Trim:
|
|
if (heli_frame) {
|
|
// use flaps for collective as no direct collective data input
|
|
rcin[2] = data[4];
|
|
}
|
|
break;
|
|
|
|
case PitchRollHeading: {
|
|
float roll, pitch, yaw;
|
|
pitch = radians(data[1]);
|
|
roll = radians(data[2]);
|
|
yaw = radians(data[3]);
|
|
dcm.from_euler(roll, pitch, yaw);
|
|
break;
|
|
}
|
|
|
|
case AtmosphereWeather:
|
|
// ignored
|
|
break;
|
|
|
|
case LocVelDistTraveled:
|
|
pos.y = data[1];
|
|
pos.z = -data[2];
|
|
pos.x = -data[3];
|
|
velocity_ef.y = data[4];
|
|
velocity_ef.z = -data[5];
|
|
velocity_ef.x = -data[6];
|
|
break;
|
|
|
|
case AngularVelocities:
|
|
gyro.y = data[1];
|
|
gyro.x = data[2];
|
|
gyro.z = data[3];
|
|
break;
|
|
|
|
case Gload:
|
|
accel_body.z = -data[5] * GRAVITY_MSS;
|
|
accel_body.x = data[6] * GRAVITY_MSS;
|
|
accel_body.y = data[7] * GRAVITY_MSS;
|
|
break;
|
|
|
|
case Joystick1:
|
|
rcin_chan_count = 4;
|
|
rcin[0] = (data[2] + 1)*0.5f;
|
|
rcin[1] = (data[1] + 1)*0.5f;
|
|
rcin[3] = (data[3] + 1)*0.5f;
|
|
break;
|
|
|
|
case ThrottleCommand: {
|
|
if (!heli_frame) {
|
|
/* getting joystick throttle input is very weird. The
|
|
* problem is that XPlane sends the ThrottleCommand packet
|
|
* both for joystick throttle input and for throttle that
|
|
* we have provided over the link. So we need some way to
|
|
* detect when we get our own values back. The trick used
|
|
* is to add throttle_magic to the values we send, then
|
|
* detect this offset in the data coming back. Very ugly,
|
|
* but I can't find a better way of allowing joystick
|
|
* input from XPlane10
|
|
*/
|
|
bool has_magic = ((uint32_t)(data[1] * throttle_magic_scale) % 1000U) == (uint32_t)(throttle_magic * throttle_magic_scale);
|
|
if (data[1] < 0 ||
|
|
data[1] == throttle_sent ||
|
|
has_magic) {
|
|
break;
|
|
}
|
|
rcin[2] = data[1];
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PropPitch: {
|
|
break;
|
|
}
|
|
|
|
case EngineRPM:
|
|
rpm1 = data[1];
|
|
break;
|
|
|
|
case PropRPM:
|
|
rpm2 = data[1];
|
|
break;
|
|
|
|
case Joystick2:
|
|
break;
|
|
|
|
case Generator:
|
|
/*
|
|
in order to get interlock switch on helis we map the
|
|
"generator1 on/off" function of XPlane 10 to channel 8.
|
|
*/
|
|
rcin_chan_count = 8;
|
|
rcin[7] = data[1];
|
|
break;
|
|
|
|
case Mixture:
|
|
// map channel 6 and 7 from Mixture3 and Mixture4 for extra channels
|
|
rcin_chan_count = MAX(7, rcin_chan_count);
|
|
rcin[5] = data[3];
|
|
rcin[6] = data[4];
|
|
break;
|
|
}
|
|
len -= pkt_len;
|
|
p += pkt_len;
|
|
}
|
|
|
|
if (data_mask != required_mask) {
|
|
// ask XPlane to change what data it sends
|
|
select_data(data_mask & ~required_mask, required_mask & ~data_mask);
|
|
goto failed;
|
|
}
|
|
position = pos + position_zero;
|
|
update_position();
|
|
|
|
accel_earth = dcm * accel_body;
|
|
accel_earth.z += GRAVITY_MSS;
|
|
|
|
// the position may slowly deviate due to float accuracy and longitude scaling
|
|
if (get_distance(loc, location) > 4 || fabsf(loc.alt - location.alt)*0.01 > 2) {
|
|
printf("X-Plane home reset dist=%f alt=%.1f/%.1f\n",
|
|
get_distance(loc, location), loc.alt*0.01f, location.alt*0.01f);
|
|
// reset home location
|
|
position_zero(-pos.x, -pos.y, -pos.z);
|
|
home.lat = loc.lat;
|
|
home.lng = loc.lng;
|
|
home.alt = loc.alt;
|
|
position.x = 0;
|
|
position.y = 0;
|
|
position.z = 0;
|
|
update_position();
|
|
}
|
|
|
|
update_mag_field_bf();
|
|
|
|
if (now > last_data_time_ms && now - last_data_time_ms < 100) {
|
|
xplane_frame_time = now - last_data_time_ms;
|
|
}
|
|
last_data_time_ms = AP_HAL::millis();
|
|
|
|
report.data_count++;
|
|
report.frame_count++;
|
|
return true;
|
|
|
|
failed:
|
|
if (AP_HAL::millis() - last_data_time_ms > 200) {
|
|
// don't extrapolate beyond 0.2s
|
|
return false;
|
|
}
|
|
|
|
// advance time by 1ms
|
|
Vector3f rot_accel;
|
|
frame_time_us = 1000;
|
|
float delta_time = frame_time_us * 1e-6f;
|
|
|
|
time_now_us += frame_time_us;
|
|
|
|
// extrapolate sensors
|
|
dcm.rotate(gyro * delta_time);
|
|
dcm.normalize();
|
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
|
// acceleration (ie. real movement), plus gravity
|
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0,0,-GRAVITY_MSS));
|
|
|
|
// new velocity and position vectors
|
|
velocity_ef += accel_earth * delta_time;
|
|
position += velocity_ef * delta_time;
|
|
velocity_air_ef = velocity_ef - wind_ef;
|
|
velocity_air_bf = dcm.transposed() * velocity_air_ef;
|
|
|
|
update_position();
|
|
update_mag_field_bf();
|
|
report.frame_count++;
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
send data to X-Plane via UDP
|
|
*/
|
|
void XPlane::send_data(const struct sitl_input &input)
|
|
{
|
|
float aileron = (input.servos[0]-1500)/500.0f;
|
|
float elevator = (input.servos[1]-1500)/500.0f;
|
|
float throttle = (input.servos[2]-1000)/1000.0;
|
|
float rudder = (input.servos[3]-1500)/500.0f;
|
|
struct PACKED {
|
|
uint8_t marker[5] { 'D', 'A', 'T', 'A', '0' };
|
|
uint32_t code;
|
|
float data[8];
|
|
} d {};
|
|
|
|
if (input.servos[0] == 0) {
|
|
aileron = 0;
|
|
}
|
|
if (input.servos[1] == 0) {
|
|
elevator = 0;
|
|
}
|
|
if (input.servos[2] == 0) {
|
|
throttle = 0;
|
|
}
|
|
if (input.servos[3] == 0) {
|
|
rudder = 0;
|
|
}
|
|
|
|
// we add the throttle_magic to the throttle value we send so we
|
|
// can detect when we get it back
|
|
throttle = ((uint32_t)(throttle * 1000)) * 1.0e-3f + throttle_magic;
|
|
|
|
uint8_t flap_chan;
|
|
if (RC_Channel_aux::find_channel(RC_Channel_aux::k_flap, flap_chan) ||
|
|
RC_Channel_aux::find_channel(RC_Channel_aux::k_flap_auto, flap_chan)) {
|
|
float flap = (input.servos[flap_chan]-1000)/1000.0;
|
|
if (flap != last_flap) {
|
|
send_dref("sim/flightmodel/controls/flaprqst", flap);
|
|
send_dref("sim/aircraft/overflow/acf_flap_arm", flap>0?1:0);
|
|
}
|
|
}
|
|
|
|
d.code = FlightCon;
|
|
d.data[0] = elevator;
|
|
d.data[1] = aileron;
|
|
d.data[2] = rudder;
|
|
d.data[4] = rudder;
|
|
socket_out.send(&d, sizeof(d));
|
|
|
|
if (!heli_frame) {
|
|
d.code = ThrottleCommand;
|
|
d.data[0] = throttle;
|
|
d.data[1] = throttle;
|
|
d.data[2] = throttle;
|
|
d.data[3] = throttle;
|
|
d.data[4] = 0;
|
|
socket_out.send(&d, sizeof(d));
|
|
} else {
|
|
// send chan3 as collective pitch, on scale from -10 to +10
|
|
float collective = 10*(input.servos[2]-1500)/500.0;
|
|
|
|
// and send throttle from channel 8
|
|
throttle = (input.servos[7]-1000)/1000.0;
|
|
|
|
// allow for extra throttle outputs for special aircraft
|
|
float throttle2 = (input.servos[5]-1000)/1000.0;
|
|
float throttle3 = (input.servos[6]-1000)/1000.0;
|
|
|
|
d.code = PropPitch;
|
|
d.data[0] = collective;
|
|
d.data[1] = -rudder*15; // reverse sense of rudder, 15 degrees pitch range
|
|
d.data[2] = 0;
|
|
d.data[3] = 0;
|
|
d.data[4] = 0;
|
|
socket_out.send(&d, sizeof(d));
|
|
|
|
d.code = ThrottleCommand;
|
|
d.data[0] = throttle;
|
|
d.data[1] = throttle;
|
|
d.data[2] = throttle2;
|
|
d.data[3] = throttle3;
|
|
d.data[4] = 0;
|
|
socket_out.send(&d, sizeof(d));
|
|
}
|
|
|
|
throttle_sent = throttle;
|
|
}
|
|
|
|
|
|
/*
|
|
send DREF to X-Plane via UDP
|
|
*/
|
|
void XPlane::send_dref(const char *name, float value)
|
|
{
|
|
struct PACKED {
|
|
uint8_t marker[5] { 'D', 'R', 'E', 'F', '0' };
|
|
float value;
|
|
char name[500];
|
|
} d {};
|
|
d.value = value;
|
|
strcpy(d.name, name);
|
|
socket_out.send(&d, sizeof(d));
|
|
}
|
|
|
|
/*
|
|
update the XPlane simulation by one time step
|
|
*/
|
|
void XPlane::update(const struct sitl_input &input)
|
|
{
|
|
if (receive_data()) {
|
|
send_data(input);
|
|
}
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
if (report.last_report_ms == 0) {
|
|
report.last_report_ms = now;
|
|
}
|
|
if (now - report.last_report_ms > 5000) {
|
|
float dt = (now - report.last_report_ms) * 1.0e-3f;
|
|
printf("Data rate: %.1f FPS Frame rate: %.1f FPS\n",
|
|
report.data_count/dt, report.frame_count/dt);
|
|
report.last_report_ms = now;
|
|
report.data_count = 0;
|
|
report.frame_count = 0;
|
|
}
|
|
}
|
|
|
|
} // namespace SITL
|