ardupilot/libraries/AP_Math/examples/eulers/eulers.pde

330 lines
8.4 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//
// Unit tests for the AP_Math euler code
//
#include <AP_HAL.h>
#include <stdlib.h>
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_Param.h>
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include <AP_HAL_Empty.h>
#include <AP_HAL_PX4.h>
#include <AP_HAL_Linux.h>
#include <AP_Math.h>
#include <Filter.h>
#include <AP_ADC.h>
#include <SITL.h>
#include <AP_Compass.h>
#include <AP_Baro.h>
#include <AP_Notify.h>
#include <AP_InertialSensor.h>
#include <AP_GPS.h>
#include <DataFlash.h>
#include <GCS_MAVLink.h>
#include <AP_Mission.h>
#include <StorageManager.h>
#include <AP_Terrain.h>
#include <AP_Declination.h>
#include <AP_AHRS.h>
#include <AP_NavEKF.h>
#include <AP_Airspeed.h>
#include <AP_Vehicle.h>
#include <AP_ADC_AnalogSource.h>
#include <AP_Rally.h>
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
#define SHOW_POLES_BREAKDOWN 0
static float rad_diff(float rad1, float rad2)
{
float diff = rad1 - rad2;
if (diff > PI) {
diff -= 2*PI;
}
if (diff < -PI) {
diff += 2*PI;
}
return fabsf(diff);
}
static void check_result(const char *msg,
float roll, float pitch, float yaw,
float roll2, float pitch2, float yaw2)
{
if (isnan(roll2) ||
isnan(pitch2) ||
isnan(yaw2)) {
hal.console->printf("%s NAN eulers roll=%f pitch=%f yaw=%f\n",
msg, roll, pitch, yaw);
}
if (rad_diff(roll2,roll) > ToRad(179)) {
// reverse all 3
roll2 += fmod(roll2+PI, 2*PI);
pitch2 += fmod(pitch2+PI, 2*PI);
yaw2 += fmod(yaw2+PI, 2*PI);
}
if (rad_diff(roll2,roll) > 0.01 ||
rad_diff(pitch2, pitch) > 0.01 ||
rad_diff(yaw2, yaw) > 0.01) {
if (pitch >= PI/2 ||
pitch <= -PI/2 ||
ToDeg(rad_diff(pitch, PI/2)) < 1 ||
ToDeg(rad_diff(pitch, -PI/2)) < 1) {
// we expect breakdown at these poles
#if SHOW_POLES_BREAKDOWN
hal.console->printf_P(
PSTR("%s breakdown eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n"),
msg,
ToDeg(roll), ToDeg(roll2),
ToDeg(pitch), ToDeg(pitch2),
ToDeg(yaw), ToDeg(yaw2));
#endif
} else {
hal.console->printf_P(
PSTR("%s incorrect eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n"),
msg,
ToDeg(roll), ToDeg(roll2),
ToDeg(pitch), ToDeg(pitch2),
ToDeg(yaw), ToDeg(yaw2));
}
}
}
static void test_euler(float roll, float pitch, float yaw)
{
Matrix3f m;
float roll2, pitch2, yaw2;
m.from_euler(roll, pitch, yaw);
m.to_euler(&roll2, &pitch2, &yaw2);
check_result("test_euler", roll, pitch, yaw, roll2, pitch2, yaw2);
}
#define ARRAY_LENGTH(x) (sizeof((x))/sizeof((x)[0]))
static const float angles[] = { 0, PI/8, PI/4, PI/2, PI,
-PI/8, -PI/4, -PI/2, -PI};
void test_matrix_eulers(void)
{
uint8_t i, j, k;
uint8_t N = ARRAY_LENGTH(angles);
hal.console->println("rotation matrix unit tests\n");
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
test_euler(angles[i], angles[j], angles[k]);
hal.console->println("tests done\n");
}
static void test_quaternion(float roll, float pitch, float yaw)
{
Quaternion q;
Matrix3f m;
float roll2, pitch2, yaw2;
q.from_euler(roll, pitch, yaw);
q.to_euler(roll2, pitch2, yaw2);
check_result("test_quaternion1", roll, pitch, yaw, roll2, pitch2, yaw2);
m.from_euler(roll, pitch, yaw);
m.to_euler(&roll2, &pitch2, &yaw2);
check_result("test_quaternion2", roll, pitch, yaw, roll2, pitch2, yaw2);
m.from_euler(roll, pitch, yaw);
q.from_rotation_matrix(m);
q.to_euler(roll2, pitch2, yaw2);
check_result("test_quaternion3", roll, pitch, yaw, roll2, pitch2, yaw2);
q.rotation_matrix(m);
m.to_euler(&roll2, &pitch2, &yaw2);
check_result("test_quaternion4", roll, pitch, yaw, roll2, pitch2, yaw2);
}
void test_quaternion_eulers(void)
{
uint8_t i, j, k;
uint8_t N = ARRAY_LENGTH(angles);
hal.console->println("quaternion unit tests\n");
test_quaternion(PI/4, 0, 0);
test_quaternion(0, PI/4, 0);
test_quaternion(0, 0, PI/4);
test_quaternion(-PI/4, 0, 0);
test_quaternion(0, -PI/4, 0);
test_quaternion(0, 0, -PI/4);
test_quaternion(-PI/4, 1, 1);
test_quaternion(1, -PI/4, 1);
test_quaternion(1, 1, -PI/4);
test_quaternion(ToRad(89), 0, 0.1);
test_quaternion(0, ToRad(89), 0.1);
test_quaternion(0.1, 0, ToRad(89));
test_quaternion(ToRad(91), 0, 0.1);
test_quaternion(0, ToRad(91), 0.1);
test_quaternion(0.1, 0, ToRad(91));
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
test_quaternion(angles[i], angles[j], angles[k]);
hal.console->println("tests done\n");
}
static void test_conversion(float roll, float pitch, float yaw)
{
Quaternion q;
Matrix3f m, m2;
float roll2, pitch2, yaw2;
float roll3, pitch3, yaw3;
q.from_euler(roll, pitch, yaw);
q.to_euler(roll2, pitch2, yaw2);
check_result("test_conversion1", roll, pitch, yaw, roll2, pitch2, yaw2);
q.rotation_matrix(m);
m.to_euler(&roll2, &pitch2, &yaw2);
m2.from_euler(roll, pitch, yaw);
m2.to_euler(&roll3, &pitch3, &yaw3);
if (m.is_nan()) {
hal.console->printf("NAN matrix roll=%f pitch=%f yaw=%f\n",
roll, pitch, yaw);
}
check_result("test_conversion2", roll, pitch, yaw, roll2, pitch2, yaw2);
check_result("test_conversion3", roll, pitch, yaw, roll3, pitch3, yaw3);
}
void test_conversions(void)
{
uint8_t i, j, k;
uint8_t N = ARRAY_LENGTH(angles);
hal.console->println("matrix/quaternion tests\n");
test_conversion(1, 1.1, 1.2);
test_conversion(1, -1.1, 1.2);
test_conversion(1, -1.1, -1.2);
test_conversion(-1, 1.1, -1.2);
test_conversion(-1, 1.1, 1.2);
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
test_conversion(angles[i], angles[j], angles[k]);
hal.console->println("tests done\n");
}
void test_frame_transforms(void)
{
Vector3f v, v2;
Quaternion q;
Matrix3f m;
hal.console->println("frame transform tests\n");
q.from_euler(ToRad(45), ToRad(45), ToRad(45));
q.normalize();
m.from_euler(ToRad(45), ToRad(45), ToRad(45));
v2 = v = Vector3f(0, 0, 1);
q.earth_to_body(v2);
hal.console->printf("%f %f %f\n", v2.x, v2.y, v2.z);
v2 = m * v;
hal.console->printf("%f %f %f\n\n", v2.x, v2.y, v2.z);
v2 = v = Vector3f(0, 1, 0);
q.earth_to_body(v2);
hal.console->printf("%f %f %f\n", v2.x, v2.y, v2.z);
v2 = m * v;
hal.console->printf("%f %f %f\n\n", v2.x, v2.y, v2.z);
v2 = v = Vector3f(1, 0, 0);
q.earth_to_body(v2);
hal.console->printf("%f %f %f\n", v2.x, v2.y, v2.z);
v2 = m * v;
hal.console->printf("%f %f %f\n", v2.x, v2.y, v2.z);
}
// generate a random float between -1 and 1
static float rand_num(void)
{
float ret = ((unsigned)random()) % 2000000;
return (ret - 1.0e6) / 1.0e6;
}
void test_matrix_rotate(void)
{
Matrix3f m1, m2, diff;
Vector3f r;
m1.identity();
m2.identity();
r.x = rand_num();
r.y = rand_num();
r.z = rand_num();
for (uint16_t i = 0; i<1000; i++) {
// old method
Matrix3f temp_matrix;
temp_matrix.a.x = 0;
temp_matrix.a.y = -r.z;
temp_matrix.a.z = r.y;
temp_matrix.b.x = r.z;
temp_matrix.b.y = 0;
temp_matrix.b.z = -r.x;
temp_matrix.c.x = -r.y;
temp_matrix.c.y = r.x;
temp_matrix.c.z = 0;
temp_matrix = m1 * temp_matrix;
m1 += temp_matrix;
// new method
m2.rotate(r);
// check they behave in the same way
diff = m1 - m2;
float err = diff.a.length() + diff.b.length() + diff.c.length();
if (err > 0) {
hal.console->printf("ERROR: i=%u err=%f\n", (unsigned)i, err);
}
}
}
/*
* euler angle tests
*/
void setup(void)
{
hal.console->println("euler unit tests\n");
test_conversion(0, PI, 0);
test_frame_transforms();
test_conversions();
test_quaternion_eulers();
test_matrix_eulers();
test_matrix_rotate();
}
void loop(void){}
AP_HAL_MAIN();