ardupilot/APMrover2/GCS_Mavlink.cpp
2018-03-26 09:22:47 +09:00

1501 lines
50 KiB
C++

#include "Rover.h"
#include "GCS_Mavlink.h"
#include <AP_RangeFinder/RangeFinder_Backend.h>
void Rover::send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
if (failsafe.triggered != 0) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
if (control_mode->has_manual_input()) {
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
if (control_mode->is_autopilot_mode()) {
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
}
#if defined(ENABLE_STICK_MIXING) && (ENABLE_STICK_MIXING == ENABLED) // TODO ???? Remove !
if (control_mode->stick_mixing_enabled()) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#endif
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
if (control_mode == &mode_initializing) {
system_status = MAV_STATE_CALIBRATING;
}
if (control_mode == &mode_hold) {
system_status = MAV_STATE_STANDBY;
}
// we are armed if we are not initialising
if (control_mode != &mode_initializing && arming.is_armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
gcs().chan(chan-MAVLINK_COMM_0).send_heartbeat(
is_boat() ? MAV_TYPE_SURFACE_BOAT : MAV_TYPE_GROUND_ROVER,
base_mode,
control_mode->mode_number(),
system_status);
}
void Rover::send_attitude(mavlink_channel_t chan)
{
const Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
void Rover::send_extended_status1(mavlink_channel_t chan)
{
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
update_sensor_status_flags();
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
static_cast<uint16_t>(scheduler.load_average() * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
void Rover::send_location(mavlink_channel_t chan)
{
const uint32_t now = AP_HAL::millis();
Vector3f vel;
ahrs.get_velocity_NED(vel);
mavlink_msg_global_position_int_send(
chan,
now,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
current_loc.alt * 10UL, // millimeters above sea level
(current_loc.alt - home.alt) * 10, // millimeters above home
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * 100, // Z speed cm/s (+ve Down)
ahrs.yaw_sensor);
}
void Rover::send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
g2.attitude_control.get_desired_lat_accel(),
ahrs.groundspeed() * ins.get_gyro().z, // use nav_pitch to hold actual Y accel
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
MIN(control_mode->get_distance_to_destination(), UINT16_MAX),
0,
control_mode->speed_error(),
nav_controller->crosstrack_error());
}
void Rover::send_servo_out(mavlink_channel_t chan)
{
float motor1, motor3;
if (g2.motors.have_skid_steering()) {
motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleLeft) / 1000.0f);
motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleRight) / 1000.0f);
} else {
motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f);
motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f);
}
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
motor1,
0,
motor3,
0,
0,
0,
0,
0,
receiver_rssi);
}
void Rover::send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
gps.ground_speed(),
ahrs.groundspeed(),
(ahrs.yaw_sensor / 100) % 360,
g2.motors.get_throttle(),
current_loc.alt / 100.0f,
0);
}
// report simulator state
void Rover::send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.simstate_send(chan);
#endif
}
void Rover::send_rangefinder(mavlink_channel_t chan)
{
float distance_cm;
float voltage;
bool got_one = false;
// report smaller distance of all rangefinders
for (uint8_t i=0; i<rangefinder.num_sensors(); i++) {
AP_RangeFinder_Backend *s = rangefinder.get_backend(i);
if (s == nullptr) {
continue;
}
if (!got_one ||
s->distance_cm() < distance_cm) {
distance_cm = s->distance_cm();
voltage = s->voltage_mv();
got_one = true;
}
}
if (!got_one) {
// no relevant data found
return;
}
mavlink_msg_rangefinder_send(
chan,
distance_cm * 0.01f,
voltage);
}
/*
send PID tuning message
*/
void Rover::send_pid_tuning(mavlink_channel_t chan)
{
const DataFlash_Class::PID_Info *pid_info;
// steering PID
if (g.gcs_pid_mask & 1) {
pid_info = &g2.attitude_control.get_steering_rate_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER,
degrees(pid_info->desired),
degrees(ahrs.get_yaw_rate_earth()),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// speed to throttle PID
if (g.gcs_pid_mask & 2) {
pid_info = &g2.attitude_control.get_throttle_speed_pid().get_pid_info();
float speed = 0.0f;
g2.attitude_control.get_forward_speed(speed);
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ,
pid_info->desired,
speed,
0,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
void Rover::send_fence_status(mavlink_channel_t chan)
{
fence_send_mavlink_status(chan);
}
void Rover::send_wheel_encoder(mavlink_channel_t chan)
{
// send wheel encoder data using rpm message
if (g2.wheel_encoder.enabled(0) || g2.wheel_encoder.enabled(1)) {
mavlink_msg_rpm_send(chan, wheel_encoder_rpm[0], wheel_encoder_rpm[1]);
}
}
uint8_t GCS_MAVLINK_Rover::sysid_my_gcs() const
{
return rover.g.sysid_my_gcs;
}
uint32_t GCS_MAVLINK_Rover::telem_delay() const
{
return static_cast<uint32_t>(rover.g.telem_delay);
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id)
{
if (telemetry_delayed()) {
return false;
}
// if we don't have at least 1ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!rover.in_mavlink_delay && rover.scheduler.time_available_usec() < 1200) {
gcs().set_out_of_time(true);
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
rover.send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
// send extended status only once vehicle has been initialised
// to avoid unnecessary errors being reported to user
if (initialised) {
CHECK_PAYLOAD_SIZE(SYS_STATUS);
rover.send_extended_status1(chan);
CHECK_PAYLOAD_SIZE(POWER_STATUS);
send_power_status();
}
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
rover.send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
rover.send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (rover.control_mode->is_autopilot_mode()) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
rover.send_nav_controller_output(chan);
}
break;
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
rover.send_servo_out(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS);
send_radio_in(rover.receiver_rssi);
break;
case MSG_SERVO_OUTPUT_RAW:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_servo_output_raw(false);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
rover.send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu(rover.ins, rover.compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure();
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets(rover.ins, rover.compass);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
rover.send_simstate(chan);
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
rover.send_rangefinder(chan);
send_distance_sensor(rover.rangefinder);
send_proximity(rover.g2.proximity);
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
rover.send_wheel_encoder(chan);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
rover.camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
rover.send_fence_status(chan);
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration(rover.ins);
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2(rover.battery);
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
rover.ahrs.send_ekf_status_report(chan);
#endif
break;
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
rover.send_pid_tuning(chan);
break;
case MSG_BATTERY_STATUS:
send_battery_status(rover.battery);
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
void
GCS_MAVLINK_Rover::data_stream_send(void)
{
gcs().set_out_of_time(false);
send_queued_parameters();
if (gcs().out_of_time()) {
return;
}
if (rover.in_mavlink_delay) {
#if HIL_MODE != HIL_MODE_DISABLED
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_SERVO_OUTPUT_RAW);
}
#endif
// don't send any other stream types while in the delay callback
return;
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_GPS_RTK);
send_message(MSG_GPS2_RAW);
send_message(MSG_GPS2_RTK);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_SERVO_OUTPUT_RAW);
send_message(MSG_RADIO_IN);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
send_message(MSG_PID_TUNING);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (gcs().out_of_time()) {
return;
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_RANGEFINDER);
send_message(MSG_SYSTEM_TIME);
send_message(MSG_BATTERY2);
send_message(MSG_BATTERY_STATUS);
send_message(MSG_MAG_CAL_REPORT);
send_message(MSG_MAG_CAL_PROGRESS);
send_message(MSG_MOUNT_STATUS);
send_message(MSG_EKF_STATUS_REPORT);
send_message(MSG_VIBRATION);
send_message(MSG_RPM);
}
}
bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
if (rover.control_mode != &rover.mode_guided) {
// only accept position updates when in GUIDED mode
return false;
}
// make any new wp uploaded instant (in case we are already in Guided mode)
rover.mode_guided.set_desired_location(cmd.content.location);
return true;
}
void GCS_MAVLINK_Rover::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// nothing to do
}
void GCS_MAVLINK_Rover::handleMessage(mavlink_message_t* msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
handle_request_data_stream(msg, true);
break;
}
case MAVLINK_MSG_ID_COMMAND_INT: {
// decode packet
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(msg, &packet);
MAV_RESULT result = MAV_RESULT_UNSUPPORTED;
switch (packet.command) {
case MAV_CMD_DO_SET_HOME: {
// assume failure
result = MAV_RESULT_FAILED;
if (is_equal(packet.param1, 1.0f)) {
// if param1 is 1, use current location
if (rover.set_home_to_current_location(true)) {
result = MAV_RESULT_ACCEPTED;
}
break;
}
// ensure param1 is zero
if (!is_zero(packet.param1)) {
break;
}
// check frame type is supported
if (packet.frame != MAV_FRAME_GLOBAL &&
packet.frame != MAV_FRAME_GLOBAL_INT &&
packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT &&
packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
break;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
break;
}
Location new_home_loc {};
new_home_loc.lat = packet.x;
new_home_loc.lng = packet.y;
new_home_loc.alt = packet.z * 100;
// handle relative altitude
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
if (!rover.ahrs.home_is_set()) {
// cannot use relative altitude if home is not set
break;
}
new_home_loc.alt += rover.ahrs.get_home().alt;
}
if (rover.set_home(new_home_loc, true)) {
result = MAV_RESULT_ACCEPTED;
}
break;
}
#if MOUNT == ENABLED
case MAV_CMD_DO_SET_ROI: {
// param1 : /* Region of interest mode (not used)*/
// param2 : /* MISSION index/ target ID (not used)*/
// param3 : /* ROI index (not used)*/
// param4 : /* empty */
// x : lat
// y : lon
// z : alt
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
break;
}
Location roi_loc;
roi_loc.lat = packet.x;
roi_loc.lng = packet.y;
roi_loc.alt = (int32_t)(packet.z * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (rover.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
rover.camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
rover.camera_mount.set_roi_target(roi_loc);
}
result = MAV_RESULT_ACCEPTED;
break;
}
#endif
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result);
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
MAV_RESULT result = MAV_RESULT_UNSUPPORTED;
// do command
switch (packet.command) {
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
rover.set_mode(rover.mode_rtl, MODE_REASON_GCS_COMMAND);
result = MAV_RESULT_ACCEPTED;
break;
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for the camera
case MAV_CMD_DO_SET_ROI:
// sanity check location
if (!check_latlng(packet.param5, packet.param6)) {
break;
}
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (rover.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
rover.camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
rover.camera_mount.set_roi_target(roi_loc);
}
result = MAV_RESULT_ACCEPTED;
break;
#endif
case MAV_CMD_DO_MOUNT_CONTROL:
#if MOUNT == ENABLED
rover.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
result = MAV_RESULT_ACCEPTED;
#endif
break;
case MAV_CMD_MISSION_START:
rover.set_mode(rover.mode_auto, MODE_REASON_GCS_COMMAND);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (hal.util->get_soft_armed()) {
result = MAV_RESULT_FAILED;
break;
}
if (is_equal(packet.param1, 1.0f)) {
rover.ins.init_gyro();
if (rover.ins.gyro_calibrated_ok_all()) {
rover.ahrs.reset_gyro_drift();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param3, 1.0f)) {
rover.init_barometer(false);
result = MAV_RESULT_ACCEPTED;
} else if (is_equal(packet.param4, 1.0f)) {
rover.trim_radio();
result = MAV_RESULT_ACCEPTED;
} else if (is_equal(packet.param5, 1.0f)) {
result = MAV_RESULT_ACCEPTED;
// start with gyro calibration
rover.ins.init_gyro();
// reset ahrs gyro bias
if (rover.ins.gyro_calibrated_ok_all()) {
rover.ahrs.reset_gyro_drift();
} else {
result = MAV_RESULT_FAILED;
}
rover.ins.acal_init();
rover.ins.get_acal()->start(this);
} else if (is_equal(packet.param5, 2.0f)) {
// start with gyro calibration
rover.ins.init_gyro();
// accel trim
float trim_roll, trim_pitch;
if (rover.ins.calibrate_trim(trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
rover.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param5,4.0f)) {
// simple accel calibration
result = rover.ins.simple_accel_cal(rover.ahrs);
} else {
send_text(MAV_SEVERITY_WARNING, "Unsupported preflight calibration");
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (is_equal(packet.param1, 1.0f) || is_equal(packet.param1, 3.0f)) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(is_equal(packet.param1, 3.0f));
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (is_equal(packet.param1, 1.0f)) {
// run pre_arm_checks and arm_checks and display failures
if (rover.arm_motors(AP_Arming::MAVLINK)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_zero(packet.param1)) {
if (rover.disarm_motors()) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_FENCE_ENABLE:
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case 0:
rover.g2.fence.enable(false);
break;
case 1:
rover.g2.fence.enable(true);
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
case MAV_CMD_DO_SET_HOME:
{
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude
result = MAV_RESULT_FAILED; // assume failure
if (is_equal(packet.param1, 1.0f)) {
if (rover.set_home_to_current_location(true)) {
result = MAV_RESULT_ACCEPTED;
}
} else {
// ensure param1 is zero
if (!is_zero(packet.param1)) {
break;
}
Location new_home_loc {};
new_home_loc.lat = static_cast<int32_t>(packet.param5 * 1.0e7f);
new_home_loc.lng = static_cast<int32_t>(packet.param6 * 1.0e7f);
new_home_loc.alt = static_cast<int32_t>(packet.param7 * 100.0f);
if (rover.set_home(new_home_loc, true)) {
result = MAV_RESULT_ACCEPTED;
}
}
break;
}
case MAV_CMD_NAV_SET_YAW_SPEED:
{
// param1 : yaw angle to adjust direction by in centidegress
// param2 : Speed - normalized to 0 .. 1
// exit if vehicle is not in Guided mode
if (rover.control_mode != &rover.mode_guided) {
break;
}
// send yaw change and target speed to guided mode controller
const float speed_max = rover.control_mode->get_speed_default();
const float target_speed = constrain_float(packet.param2 * speed_max, -speed_max, speed_max);
rover.mode_guided.set_desired_heading_delta_and_speed(packet.param1, target_speed);
result = MAV_RESULT_ACCEPTED;
break;
}
case MAV_CMD_ACCELCAL_VEHICLE_POS:
result = MAV_RESULT_FAILED;
if (rover.ins.get_acal()->gcs_vehicle_position(packet.param1)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
result = rover.mavlink_motor_test_start(chan, static_cast<uint8_t>(packet.param1),
static_cast<uint8_t>(packet.param2),
static_cast<int16_t>(packet.param3),
packet.param4);
break;
default:
result = handle_command_long_message(packet);
break;
}
mavlink_msg_command_ack_send_buf(
msg,
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if (msg->sysid != rover.g.sysid_my_gcs) { // Only accept control from our gcs
break;
}
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
rover.failsafe.rc_override_timer = AP_HAL::millis();
rover.failsafe_trigger(FAILSAFE_EVENT_RC, false);
break;
}
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
if (msg->sysid != rover.g.sysid_my_gcs) { // Only accept control from our gcs
break;
}
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(msg, &packet);
const int16_t roll = (packet.y == INT16_MAX) ? 0 : rover.channel_steer->get_radio_min() + (rover.channel_steer->get_radio_max() - rover.channel_steer->get_radio_min()) * (packet.y + 1000) / 2000.0f;
const int16_t throttle = (packet.z == INT16_MAX) ? 0 : rover.channel_throttle->get_radio_min() + (rover.channel_throttle->get_radio_max() - rover.channel_throttle->get_radio_min()) * (packet.z + 1000) / 2000.0f;
hal.rcin->set_override(uint8_t(rover.rcmap.roll() - 1), roll);
hal.rcin->set_override(uint8_t(rover.rcmap.throttle() - 1), throttle);
rover.failsafe.rc_override_timer = AP_HAL::millis();
rover.failsafe_trigger(FAILSAFE_EVENT_RC, false);
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if (msg->sysid != rover.g.sysid_my_gcs) {
break;
}
rover.last_heartbeat_ms = rover.failsafe.rc_override_timer = AP_HAL::millis();
rover.failsafe_trigger(FAILSAFE_EVENT_GCS, false);
break;
}
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(msg, &packet);
// exit if vehicle is not in Guided mode
if (rover.control_mode != &rover.mode_guided) {
break;
}
// ensure type_mask specifies to use thrust
if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_THROTTLE_IGNORE) != 0) {
break;
}
// convert thrust to ground speed
packet.thrust = constrain_float(packet.thrust, -1.0f, 1.0f);
const float target_speed = rover.control_mode->get_speed_default() * packet.thrust;
// if the body_yaw_rate field is ignored, convert quaternion to heading
if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_YAW_RATE_IGNORE) != 0) {
// convert quaternion to heading
float target_heading_cd = degrees(Quaternion(packet.q[0], packet.q[1], packet.q[2], packet.q[3]).get_euler_yaw()) * 100.0f;
rover.mode_guided.set_desired_heading_and_speed(target_heading_cd, target_speed);
} else {
// use body_yaw_rate field
rover.mode_guided.set_desired_turn_rate_and_speed((RAD_TO_DEG * packet.body_yaw_rate) * 100.0f, target_speed);
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(msg, &packet);
// exit if vehicle is not in Guided mode
if (rover.control_mode != &rover.mode_guided) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// prepare target position
Location target_loc = rover.current_loc;
if (!pos_ignore) {
switch (packet.coordinate_frame) {
case MAV_FRAME_BODY_NED:
case MAV_FRAME_BODY_OFFSET_NED: {
// rotate from body-frame to NE frame
const float ne_x = packet.x * rover.ahrs.cos_yaw() - packet.y * rover.ahrs.sin_yaw();
const float ne_y = packet.x * rover.ahrs.sin_yaw() + packet.y * rover.ahrs.cos_yaw();
// add offset to current location
location_offset(target_loc, ne_x, ne_y);
}
break;
case MAV_FRAME_LOCAL_OFFSET_NED:
// add offset to current location
location_offset(target_loc, packet.x, packet.y);
break;
default:
// MAV_FRAME_LOCAL_NED interpret as an offset from home
target_loc = rover.ahrs.get_home();
location_offset(target_loc, packet.x, packet.y);
break;
}
}
float target_speed = 0.0f;
float target_yaw_cd = 0.0f;
// consume velocity and convert to target speed and heading
if (!vel_ignore) {
const float speed_max = rover.control_mode->get_speed_default();
// convert vector length into a speed
target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max);
// convert vector direction to target yaw
target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw heading
if (!yaw_ignore) {
target_yaw_cd = ToDeg(packet.yaw) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw rate
float target_turn_rate_cds = 0.0f;
if (!yaw_rate_ignore) {
target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// handling case when both velocity and either yaw or yaw-rate are provided
// by default, we consider that the rover will drive forward
float speed_dir = 1.0f;
if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) {
// Note: we are using the x-axis velocity to determine direction even though
// the frame may have been provided in MAV_FRAME_LOCAL_OFFSET_NED or MAV_FRAME_LOCAL_NED
if (is_negative(packet.vx)) {
speed_dir = -1.0f;
}
}
// set guided mode targets
if (!pos_ignore && vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) {
// consume position target
rover.mode_guided.set_desired_location(target_loc);
} else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume velocity and turn rate
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed);
} else if (pos_ignore && !vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (pos_ignore && vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume just target heading (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f);
} else if (pos_ignore && vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume just turn rate(probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f);
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(msg, &packet);
// exit if vehicle is not in Guided mode
if (rover.control_mode != &rover.mode_guided) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_GLOBAL &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_INT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// prepare target position
Location target_loc = rover.current_loc;
if (!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
// result = MAV_RESULT_FAILED;
break;
}
target_loc.lat = packet.lat_int;
target_loc.lng = packet.lon_int;
}
float target_speed = 0.0f;
float target_yaw_cd = 0.0f;
// consume velocity and convert to target speed and heading
if (!vel_ignore) {
const float speed_max = rover.control_mode->get_speed_default();
// convert vector length into a speed
target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max);
// convert vector direction to target yaw
target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw heading
if (!yaw_ignore) {
target_yaw_cd = ToDeg(packet.yaw) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw rate
float target_turn_rate_cds = 0.0f;
if (!yaw_rate_ignore) {
target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// handling case when both velocity and either yaw or yaw-rate are provided
// by default, we consider that the rover will drive forward
float speed_dir = 1.0f;
if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) {
// Note: we are using the x-axis velocity to determine direction even though
// the frame is provided in MAV_FRAME_GLOBAL_xxx
if (is_negative(packet.vx)) {
speed_dir = -1.0f;
}
}
// set guided mode targets
if (!pos_ignore && vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) {
// consume position target
rover.mode_guided.set_desired_location(target_loc);
} else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume velocity and turn rate
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed);
} else if (pos_ignore && !vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (pos_ignore && vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume just target heading (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f);
} else if (pos_ignore && vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume just turn rate(probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f);
}
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE:
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
// set gps hil sensor
Location loc;
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0f);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0f);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0f);
ins.set_gyro(0, gyros);
ins.set_accel(0, accels);
compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE
#if MOUNT == ENABLED
// deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
rover.camera_mount.configure_msg(msg);
break;
}
// deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
rover.camera_mount.control_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
handle_radio_status(msg, rover.DataFlash, rover.should_log(MASK_LOG_PM));
break;
}
// send or receive fence points with GCS
case MAVLINK_MSG_ID_FENCE_POINT: // MAV ID: 160
case MAVLINK_MSG_ID_FENCE_FETCH_POINT:
rover.g2.fence.handle_msg(*this, msg);
break;
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
rover.rangefinder.handle_msg(msg);
rover.g2.proximity.handle_msg(msg);
break;
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
void Rover::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs().chan(0).initialised || in_mavlink_delay) {
return;
}
in_mavlink_delay = true;
// don't allow potentially expensive logging calls:
DataFlash.EnableWrites(false);
const uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs().send_message(MSG_HEARTBEAT);
gcs().send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM");
}
check_usb_mux();
DataFlash.EnableWrites(true);
in_mavlink_delay = false;
}
/*
* send data streams in the given rate range on both links
*/
void Rover::gcs_data_stream_send(void)
{
gcs().data_stream_send();
}
/*
* look for incoming commands on the GCS links
*/
void Rover::gcs_update(void)
{
gcs().update();
}
/**
retry any deferred messages
*/
void Rover::gcs_retry_deferred(void)
{
gcs().retry_deferred();
}
/*
return true if we will accept this packet. Used to implement SYSID_ENFORCE
*/
bool GCS_MAVLINK_Rover::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg)
{
if (!rover.g2.sysid_enforce) {
return true;
}
if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) {
return true;
}
return (msg.sysid == rover.g.sysid_my_gcs);
}
AP_Camera *GCS_MAVLINK_Rover::get_camera() const
{
#if CAMERA == ENABLED
return &rover.camera;
#else
return nullptr;
#endif
}
AP_ServoRelayEvents *GCS_MAVLINK_Rover::get_servorelayevents() const
{
return &rover.ServoRelayEvents;
}
AP_AdvancedFailsafe *GCS_MAVLINK_Rover::get_advanced_failsafe() const
{
#if ADVANCED_FAILSAFE == ENABLED
return &rover.g2.afs;
#else
return nullptr;
#endif
}
AP_VisualOdom *GCS_MAVLINK_Rover::get_visual_odom() const
{
#if VISUAL_ODOMETRY_ENABLED == ENABLED
return &rover.g2.visual_odom;
#else
return nullptr;
#endif
}
Compass *GCS_MAVLINK_Rover::get_compass() const
{
return &rover.compass;
}
AP_Mission *GCS_MAVLINK_Rover::get_mission()
{
return &rover.mission;
}
bool GCS_MAVLINK_Rover::set_mode(const uint8_t mode)
{
Mode *new_mode = rover.mode_from_mode_num((enum mode)mode);
if (new_mode == nullptr) {
return false;
}
return rover.set_mode(*new_mode, MODE_REASON_GCS_COMMAND);
}
const AP_FWVersion &GCS_MAVLINK_Rover::get_fwver() const
{
return rover.fwver;
}
void GCS_MAVLINK_Rover::set_ekf_origin(const Location& loc)
{
rover.set_ekf_origin(loc);
}