5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-12 02:48:28 -04:00
ardupilot/libraries/AP_HAL_ChibiOS/RCInput.cpp

238 lines
5.9 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <hal.h>
#include "RCInput.h"
#include "hal.h"
#include "hwdef/common/ppm.h"
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include <AP_RCProtocol/AP_RCProtocol_config.h>
#if HAL_WITH_IO_MCU
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
#include <AP_Math/AP_Math.h>
#ifndef HAL_NO_UARTDRIVER
#include <GCS_MAVLink/GCS.h>
#endif
#define SIG_DETECT_TIMEOUT_US 500000
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
void RCInput::init()
{
#if AP_RCPROTOCOL_ENABLED
AP::RC().init();
#endif
#if HAL_USE_ICU == TRUE
//attach timer channel on which the signal will be received
sig_reader.attach_capture_timer(&RCIN_ICU_TIMER, RCIN_ICU_CHANNEL, STM32_RCIN_DMA_STREAM, STM32_RCIN_DMA_CHANNEL);
pulse_input_enabled = true;
#endif
#if HAL_USE_EICU == TRUE
sig_reader.init(&RCININT_EICU_TIMER, RCININT_EICU_CHANNEL);
pulse_input_enabled = true;
#endif
_init = true;
}
/*
enable or disable pulse input for RC input. This is used to reduce
load when we are decoding R/C via a UART
*/
void RCInput::pulse_input_enable(bool enable)
{
pulse_input_enabled = enable;
#if HAL_USE_ICU == TRUE || HAL_USE_EICU == TRUE
if (!enable) {
sig_reader.disable();
}
#endif
}
bool RCInput::new_input()
{
if (!_init) {
return false;
}
bool valid;
{
WITH_SEMAPHORE(rcin_mutex);
valid = _rcin_timestamp_last_signal != _last_read;
_last_read = _rcin_timestamp_last_signal;
}
return valid;
}
uint8_t RCInput::num_channels()
{
if (!_init) {
return 0;
}
return _num_channels;
}
uint16_t RCInput::read(uint8_t channel)
{
if (!_init || (channel >= MIN(RC_INPUT_MAX_CHANNELS, _num_channels))) {
return 0;
}
uint16_t v;
{
WITH_SEMAPHORE(rcin_mutex);
v = _rc_values[channel];
}
return v;
}
uint8_t RCInput::read(uint16_t* periods, uint8_t len)
{
if (!_init) {
return false;
}
if (len > RC_INPUT_MAX_CHANNELS) {
len = RC_INPUT_MAX_CHANNELS;
}
{
WITH_SEMAPHORE(rcin_mutex);
memcpy(periods, _rc_values, len*sizeof(periods[0]));
}
return len;
}
void RCInput::_timer_tick(void)
{
if (!_init) {
return;
}
#ifndef HAL_NO_UARTDRIVER
const char *rc_protocol = nullptr;
RCSource source = last_source;
#endif
#if AP_RCPROTOCOL_ENABLED
AP_RCProtocol &rcprot = AP::RC();
#if HAL_USE_ICU == TRUE
if (pulse_input_enabled) {
const uint32_t *p;
uint32_t n;
while ((p = (const uint32_t *)sig_reader.sigbuf.readptr(n)) != nullptr) {
rcprot.process_pulse_list(p, n*2, sig_reader.need_swap);
sig_reader.sigbuf.advance(n);
}
}
#endif
#if HAL_USE_EICU == TRUE
if (pulse_input_enabled) {
uint32_t width_s0, width_s1;
while(sig_reader.read(width_s0, width_s1)) {
rcprot.process_pulse(width_s0, width_s1);
}
}
#endif
#endif // AP_RCPROTOCOL_ENABLED
#if HAL_WITH_IO_MCU
uint32_t now = AP_HAL::millis();
const bool have_iocmu_rc = (_rcin_last_iomcu_ms != 0 && now - _rcin_last_iomcu_ms < 400);
if (!have_iocmu_rc) {
_rcin_last_iomcu_ms = 0;
}
#elif AP_RCPROTOCOL_ENABLED
const bool have_iocmu_rc = false;
#endif
#if AP_RCPROTOCOL_ENABLED
if (rcprot.new_input() && !have_iocmu_rc) {
WITH_SEMAPHORE(rcin_mutex);
_rcin_timestamp_last_signal = AP_HAL::micros();
_num_channels = rcprot.num_channels();
_num_channels = MIN(_num_channels, RC_INPUT_MAX_CHANNELS);
rcprot.read(_rc_values, _num_channels);
_rssi = rcprot.get_RSSI();
_rx_link_quality = rcprot.get_rx_link_quality();
#ifndef HAL_NO_UARTDRIVER
rc_protocol = rcprot.protocol_name();
source = rcprot.using_uart() ? RCSource::RCPROT_BYTES : RCSource::RCPROT_PULSES;
#endif
}
#endif // AP_RCPROTOCOL_ENABLED
#if HAL_WITH_IO_MCU
{
WITH_SEMAPHORE(rcin_mutex);
if (AP_BoardConfig::io_enabled() &&
iomcu.check_rcinput(last_iomcu_us, _num_channels, _rc_values, RC_INPUT_MAX_CHANNELS)) {
_rcin_timestamp_last_signal = last_iomcu_us;
_rcin_last_iomcu_ms = now;
#ifndef HAL_NO_UARTDRIVER
rc_protocol = iomcu.get_rc_protocol();
_rssi = iomcu.get_RSSI();
source = RCSource::IOMCU;
#endif
}
}
#endif
#ifndef HAL_NO_UARTDRIVER
if (rc_protocol && (rc_protocol != last_protocol || source != last_source)) {
last_protocol = rc_protocol;
last_source = source;
GCS_SEND_TEXT(MAV_SEVERITY_DEBUG, "RCInput: decoding %s(%u)", last_protocol, unsigned(source));
}
#endif
// note, we rely on the vehicle code checking new_input()
// and a timeout for the last valid input to handle failsafe
}
/*
start a bind operation, if supported
*/
bool RCInput::rc_bind(int dsmMode)
{
#if HAL_WITH_IO_MCU
{
WITH_SEMAPHORE(rcin_mutex);
if (AP_BoardConfig::io_enabled()) {
iomcu.bind_dsm(dsmMode);
}
}
#endif
#if AP_RCPROTOCOL_ENABLED
// ask AP_RCProtocol to start a bind
AP::RC().start_bind();
#endif
return true;
}
#endif //#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS