mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 10:28:29 -04:00
af2d7232c5
thanks to Tom for the testing!
143 lines
5.6 KiB
C++
143 lines
5.6 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Code by Andrew Tridgell
|
|
// Based upon the roll controller by Paul Riseborough and Jon Challinger
|
|
//
|
|
|
|
#include <AP_Math.h>
|
|
#include <AP_HAL.h>
|
|
#include "AP_SteerController.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_SteerController::var_info[] PROGMEM = {
|
|
// @Param: T_CONST
|
|
// @DisplayName: Steering Time Constant
|
|
// @Description: This controls the time constant in seconds from demanded to achieved bank angle. A value of 0.5 is a good default and will work with nearly all models. Advanced users may want to reduce this time to obtain a faster response but there is no point setting a time less than the aircraft can achieve.
|
|
// @Range: 0.4 1.0
|
|
// @Units: seconds
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("TCONST", 0, AP_SteerController, _tau, 0.75f),
|
|
|
|
// @Param: P
|
|
// @DisplayName: Steering turning gain
|
|
// @Description: The proportional gain for steering. This should be approximately equal to the diameter of the turning circle of the vehicle at low speed and maximum steering angle
|
|
// @Range: 0.1 10.0
|
|
// @Increment: 0.1
|
|
// @User: User
|
|
AP_GROUPINFO("P", 1, AP_SteerController, _K_P, 1.8f),
|
|
|
|
// @Param: I
|
|
// @DisplayName: Integrator Gain
|
|
// @Description: This is the gain from the integral of steering angle. Increasing this gain causes the controller to trim out steady offsets due to an out of trim vehicle.
|
|
// @Range: 0 1.0
|
|
// @Increment: 0.05
|
|
// @User: User
|
|
AP_GROUPINFO("I", 3, AP_SteerController, _K_I, 0.2f),
|
|
|
|
// @Param: D
|
|
// @DisplayName: Damping Gain
|
|
// @Description: This adjusts the damping of the steering control loop. This gain helps to reduce steering jitter with vibration. It should be increased in 0.01 increments as too high a value can lead to a high frequency steering oscillation that could overstress the vehicle.
|
|
// @Range: 0 0.1
|
|
// @Increment: 0.01
|
|
// @User: User
|
|
AP_GROUPINFO("D", 4, AP_SteerController, _K_D, 0.005f),
|
|
|
|
// @Param: IMAX
|
|
// @DisplayName: Integrator limit
|
|
// @Description: This limits the number of degrees of steering in centi-degrees over which the integrator will operate. At the default setting of 1500 centi-degrees, the integrator will be limited to +- 15 degrees of servo travel. The maximum servo deflection is +- 45 centi-degrees, so the default value represents a 1/3rd of the total control throw which is adequate unless the vehicle is severely out of trim.
|
|
// @Range: 0 4500
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("IMAX", 5, AP_SteerController, _imax, 1500),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
|
|
/*
|
|
internal rate controller, called by attitude and rate controller
|
|
public functions
|
|
*/
|
|
int32_t AP_SteerController::get_steering_out(float desired_accel)
|
|
{
|
|
uint32_t tnow = hal.scheduler->millis();
|
|
uint32_t dt = tnow - _last_t;
|
|
if (_last_t == 0 || dt > 1000) {
|
|
dt = 0;
|
|
}
|
|
_last_t = tnow;
|
|
|
|
float speed = _ahrs.groundspeed();
|
|
if (speed < 1.0e-6) {
|
|
// with no speed all we can do is center the steering
|
|
return 0;
|
|
}
|
|
|
|
// this is a linear approximation of the inverse steering
|
|
// equation for a ground vehicle. It returns steering as an angle from -45 to 45
|
|
float scaler = 1.0f / speed;
|
|
|
|
// Calculate the steering rate error (deg/sec) and apply gain scaler
|
|
float desired_rate = desired_accel / speed;
|
|
float rate_error = (ToDeg(desired_rate) - ToDeg(_ahrs.get_gyro().z)) * scaler;
|
|
|
|
// Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law
|
|
// No conversion is required for K_D
|
|
float ki_rate = _K_I * _tau * 45.0f;
|
|
float kp_ff = max((_K_P - _K_I * _tau) * _tau - _K_D , 0) * 45.0f;
|
|
float delta_time = (float)dt * 0.001f;
|
|
|
|
// Multiply roll rate error by _ki_rate and integrate
|
|
// Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs
|
|
if (ki_rate > 0) {
|
|
// only integrate if gain and time step are positive.
|
|
if (dt > 0) {
|
|
float integrator_delta = rate_error * ki_rate * delta_time * scaler;
|
|
// prevent the integrator from increasing if steering defln demand is above the upper limit
|
|
if (_last_out < -45) {
|
|
integrator_delta = max(integrator_delta , 0);
|
|
} else if (_last_out > 45) {
|
|
// prevent the integrator from decreasing if steering defln demand is below the lower limit
|
|
integrator_delta = min(integrator_delta, 0);
|
|
}
|
|
_integrator += integrator_delta;
|
|
}
|
|
} else {
|
|
_integrator = 0;
|
|
}
|
|
|
|
// Scale the integration limit
|
|
float intLimScaled = _imax * 0.01f;
|
|
|
|
// Constrain the integrator state
|
|
_integrator = constrain_float(_integrator, -intLimScaled, intLimScaled);
|
|
|
|
// Calculate the demanded control surface deflection
|
|
_last_out = (rate_error * _K_D * 4.0f) + (desired_rate * kp_ff) * scaler + _integrator;
|
|
|
|
// Convert to centi-degrees and constrain
|
|
return constrain_float(_last_out * 100, -4500, 4500);
|
|
}
|
|
|
|
void AP_SteerController::reset_I()
|
|
{
|
|
_integrator = 0;
|
|
}
|
|
|