ardupilot/ArduCopterMega/Attitude.pde
jasonshort c3737db26c added better value for Sonar minimal value for landing
removed FBW mode - no longer needed
added set_throttle_cruise_flag to auto set the throttle value for alt hold
added altitude minimum option for waypoints
added support for relative WPs
added support for Yaw tracking per WP in options bitmask

lowered default sonar kD value
increased minimal value to set the throttle cruise value with CH7 switch
updated README.txt
added additional stock test missions available in CLI


git-svn-id: https://arducopter.googlecode.com/svn/trunk@1856 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-04-08 19:13:31 +00:00

273 lines
8.0 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
void
init_pids()
{
// create limits to how much dampening we'll allow
// this creates symmetry with the P gain value preventing oscillations
max_stabilize_dampener = g.pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15°
max_yaw_dampener = g.pid_yaw.kP() * 6000; // = .5 * 6000 = 3000
}
void
control_nav_mixer()
{
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
g.rc_1.servo_out = g.rc_1.control_mix(nav_roll);
g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch);
}
void
fbw_nav_mixer()
{
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
g.rc_1.servo_out = nav_roll;
g.rc_2.servo_out = nav_pitch;
}
void
output_stabilize_roll()
{
float error, rate;
int dampener;
error = g.rc_1.servo_out - dcm.roll_sensor;
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
g.rc_1.servo_out = g.pid_stabilize_roll.get_pid(error, delta_ms_fast_loop, 1.0);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
// Limit dampening to be equal to propotional term for symmetry
rate = degrees(omega.x) * 100.0; // 6rad = 34377
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000
g.rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
}
void
output_stabilize_pitch()
{
float error, rate;
int dampener;
error = g.rc_2.servo_out - dcm.pitch_sensor;
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
g.rc_2.servo_out = g.pid_stabilize_pitch.get_pid(error, delta_ms_fast_loop, 1.0);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
// Limit dampening to be equal to propotional term for symmetry
rate = degrees(omega.y) * 100.0; // 6rad = 34377
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000
g.rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
}
void
clear_yaw_control()
{
//Serial.print("Clear ");
rate_yaw_flag = false; // exit rate_yaw_flag
nav_yaw = dcm.yaw_sensor; // save our Yaw
yaw_error = 0;
}
void
output_yaw_with_hold(boolean hold)
{
if(hold){
// look to see if we have exited rate control properly - ie stopped turning
if(rate_yaw_flag){
// we are still in motion from rate control
if(fabs(omega.z) < .5){
clear_yaw_control();
hold = true; // just to be explicit
//Serial.print("C");
}else{
// return to rate control until we slow down.
hold = false;
//Serial.print("D");
}
}
}else{
// rate control
// this indicates we are under rate control, when we enter Yaw Hold and
// return to 0° per second, we exit rate control and hold the current Yaw
rate_yaw_flag = true;
yaw_error = 0;
}
if(hold){
// try and hold the current nav_yaw setting
yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60°
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees
// Apply PID and save the new angle back to RC_Channel
g.rc_4.servo_out = g.pid_yaw.get_pid(yaw_error, delta_ms_fast_loop, 1.0); // .5 * 6000 = 3000
// We adjust the output by the rate of rotation
long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377
int dampener = ((float)rate * g.hold_yaw_dampener); // 18000 * .17 = 3000
// Limit dampening to be equal to propotional term for symmetry
g.rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000
}else{
// rate control
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000
// -error = CCW, +error = CW
if(g.rc_4.control_in == 0){
// we are breaking;
g.rc_4.servo_out = (omega.z > 0) ? -1800 : 1800;
//switch comments to get old behavior.
//g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520
}else{
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520
}
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -1800, 1800); // limit to 24°
}
}
// slight left rudder gives right roll.
void
output_rate_roll()
{
// rate control
long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000
g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400
}
void
output_rate_pitch()
{
// rate control
long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000
g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
void
reset_I(void)
{
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
g.pid_baro_throttle.reset_I();
g.pid_sonar_throttle.reset_I();
}
/*************************************************************
throttle control
****************************************************************/
// user input:
// -----------
void output_manual_throttle()
{
g.rc_3.servo_out = (float)g.rc_3.control_in * angle_boost();
}
// Autopilot
// ---------
void output_auto_throttle()
{
g.rc_3.servo_out = (float)nav_throttle * angle_boost();
// make sure we never send a 0 throttle that will cut the motors
g.rc_3.servo_out = max(g.rc_3.servo_out, 1);
}
void calc_nav_throttle()
{
// limit error
long error = constrain(altitude_error, -400, 400);
float scaler = 1.0;
if(error < 0){
scaler = (altitude_sensor == BARO) ? .5 : .5;
}
if(altitude_sensor == BARO){
nav_throttle = g.pid_baro_throttle.get_pid(error, delta_ms_fast_loop, scaler);
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -30, 80);
}else{
nav_throttle = g.pid_sonar_throttle.get_pid(error, delta_ms_fast_loop, scaler);
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -60, 100);
}
nav_throttle = (nav_throttle + nav_throttle_old) >> 1;
nav_throttle_old = nav_throttle;
//Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler);
}
float angle_boost()
{
float temp = cos_pitch_x * cos_roll_x;
temp = 2.0 - constrain(temp, .7, 1.0);
return temp;
}
/*************************************************************
yaw control
****************************************************************/
void output_manual_yaw()
{
if(g.rc_3.control_in == 0){
clear_yaw_control();
}else{
// Yaw control
if(g.rc_4.control_in == 0){
output_yaw_with_hold(true); // hold yaw
}else{
output_yaw_with_hold(false); // rate control yaw
}
}
}
void auto_yaw()
{
if(yaw_tracking & TRACK_NEXT_WP){
nav_yaw = target_bearing;
}
output_yaw_with_hold(true); // hold yaw
}