mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
c3319afadd
these allow you to control if the compass should be used for yaw and if it should learn its offsets. This is useful for locking in compass offsets once they are confirmed to be good, and for learning offsets without using them in flights. The default is to behave the same as previously, which is COMPASS_LEARN=1 and COMPASS_USE=1
224 lines
6.1 KiB
C++
224 lines
6.1 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#include "Compass.h"
|
|
|
|
const AP_Param::GroupInfo Compass::var_info[] PROGMEM = {
|
|
AP_GROUPINFO("ORIENT", 0, Compass, _orientation_matrix),
|
|
AP_GROUPINFO("OFS", 1, Compass, _offset),
|
|
AP_GROUPINFO("DEC", 2, Compass, _declination),
|
|
AP_GROUPINFO("LEARN", 3, Compass, _learn), // true if learning calibration
|
|
AP_GROUPINFO("USE", 4, Compass, _use_for_yaw), // true if used for DCM yaw
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
Compass::Compass(void) :
|
|
_declination (0.0),
|
|
_null_init_done(false),
|
|
_null_enable(false),
|
|
product_id(AP_COMPASS_TYPE_UNKNOWN)
|
|
{
|
|
// Default the orientation matrix to none - will be overridden at group load time
|
|
// if an orientation has previously been saved.
|
|
_orientation_matrix.set(ROTATION_NONE);
|
|
}
|
|
|
|
//_group
|
|
|
|
// Default init method, just returns success.
|
|
//
|
|
bool
|
|
Compass::init()
|
|
{
|
|
// enable learning by default
|
|
if (!_learn.load()) {
|
|
_learn.set(1);
|
|
}
|
|
// enable use for yaw calculation by default
|
|
if (!_use_for_yaw.load()) {
|
|
_use_for_yaw.set(1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Compass::set_orientation(const Matrix3f &rotation_matrix)
|
|
{
|
|
_orientation_matrix.set_and_save(rotation_matrix);
|
|
}
|
|
|
|
void
|
|
Compass::set_offsets(const Vector3f &offsets)
|
|
{
|
|
_offset.set(offsets);
|
|
}
|
|
|
|
void
|
|
Compass::save_offsets()
|
|
{
|
|
_offset.save();
|
|
}
|
|
|
|
Vector3f &
|
|
Compass::get_offsets()
|
|
{
|
|
return _offset;
|
|
}
|
|
|
|
void
|
|
Compass::set_declination(float radians)
|
|
{
|
|
_declination.set_and_save(radians);
|
|
}
|
|
|
|
float
|
|
Compass::get_declination()
|
|
{
|
|
return _declination.get();
|
|
}
|
|
|
|
|
|
void
|
|
Compass::calculate(float roll, float pitch)
|
|
{
|
|
// Note - This function implementation is deprecated
|
|
// The alternate implementation of this function using the dcm matrix is preferred
|
|
float headX;
|
|
float headY;
|
|
float cos_roll;
|
|
float sin_roll;
|
|
float cos_pitch;
|
|
float sin_pitch;
|
|
cos_roll = cos(roll);
|
|
sin_roll = sin(roll);
|
|
cos_pitch = cos(pitch);
|
|
sin_pitch = sin(pitch);
|
|
|
|
// Tilt compensated magnetic field X component:
|
|
headX = mag_x*cos_pitch + mag_y*sin_roll*sin_pitch + mag_z*cos_roll*sin_pitch;
|
|
// Tilt compensated magnetic field Y component:
|
|
headY = mag_y*cos_roll - mag_z*sin_roll;
|
|
// magnetic heading
|
|
heading = atan2(-headY,headX);
|
|
|
|
// Declination correction (if supplied)
|
|
if( fabs(_declination) > 0.0 )
|
|
{
|
|
heading = heading + _declination;
|
|
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
|
|
heading -= (2.0 * M_PI);
|
|
else if (heading < -M_PI)
|
|
heading += (2.0 * M_PI);
|
|
}
|
|
|
|
// Optimization for external DCM use. Calculate normalized components
|
|
heading_x = cos(heading);
|
|
heading_y = sin(heading);
|
|
}
|
|
|
|
|
|
void
|
|
Compass::calculate(const Matrix3f &dcm_matrix)
|
|
{
|
|
float headX;
|
|
float headY;
|
|
float cos_pitch = safe_sqrt(1-(dcm_matrix.c.x*dcm_matrix.c.x));
|
|
// sin(pitch) = - dcm_matrix(3,1)
|
|
// cos(pitch)*sin(roll) = - dcm_matrix(3,2)
|
|
// cos(pitch)*cos(roll) = - dcm_matrix(3,3)
|
|
|
|
if (cos_pitch == 0.0) {
|
|
// we are pointing straight up or down so don't update our
|
|
// heading using the compass. Wait for the next iteration when
|
|
// we hopefully will have valid values again.
|
|
return;
|
|
}
|
|
|
|
// Tilt compensated magnetic field X component:
|
|
headX = mag_x*cos_pitch - mag_y*dcm_matrix.c.y*dcm_matrix.c.x/cos_pitch - mag_z*dcm_matrix.c.z*dcm_matrix.c.x/cos_pitch;
|
|
// Tilt compensated magnetic field Y component:
|
|
headY = mag_y*dcm_matrix.c.z/cos_pitch - mag_z*dcm_matrix.c.y/cos_pitch;
|
|
// magnetic heading
|
|
// 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S.
|
|
heading = constrain(atan2(-headY,headX), -3.15, 3.15);
|
|
|
|
// Declination correction (if supplied)
|
|
if( fabs(_declination) > 0.0 )
|
|
{
|
|
heading = heading + _declination;
|
|
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
|
|
heading -= (2.0 * M_PI);
|
|
else if (heading < -M_PI)
|
|
heading += (2.0 * M_PI);
|
|
}
|
|
|
|
// Optimization for external DCM use. Calculate normalized components
|
|
heading_x = cos(heading);
|
|
heading_y = sin(heading);
|
|
|
|
#if 0
|
|
if (isnan(heading_x) || isnan(heading_y)) {
|
|
Serial.printf("COMPASS: c.x %f c.y %f c.z %f cos_pitch %f mag_x %d mag_y %d mag_z %d headX %f headY %f heading %f heading_x %f heading_y %f\n",
|
|
dcm_matrix.c.x,
|
|
dcm_matrix.c.y,
|
|
dcm_matrix.c.x,
|
|
cos_pitch,
|
|
(int)mag_x, (int)mag_y, (int)mag_z,
|
|
headX, headY,
|
|
heading,
|
|
heading_x, heading_y);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
Compass::null_offsets(const Matrix3f &dcm_matrix)
|
|
{
|
|
if (_null_enable == false || _learn == 0) {
|
|
// auto-calibration is disabled
|
|
return;
|
|
}
|
|
|
|
// Update our estimate of the offsets in the magnetometer
|
|
Vector3f calc;
|
|
Matrix3f dcm_new_from_last;
|
|
float weight;
|
|
|
|
Vector3f mag_body_new = Vector3f(mag_x,mag_y,mag_z);
|
|
|
|
if(_null_init_done) {
|
|
dcm_new_from_last = dcm_matrix.transposed() * _last_dcm_matrix; // Note 11/20/2010: transpose() is not working, transposed() is.
|
|
|
|
weight = 3.0 - fabs(dcm_new_from_last.a.x) - fabs(dcm_new_from_last.b.y) - fabs(dcm_new_from_last.c.z);
|
|
if (weight > .001) {
|
|
calc = mag_body_new + _mag_body_last; // Eq 11 from Bill P's paper
|
|
calc -= dcm_new_from_last * _mag_body_last;
|
|
calc -= dcm_new_from_last.transposed() * mag_body_new;
|
|
if(weight > 0.5) weight = 0.5;
|
|
calc = calc * (weight);
|
|
_offset.set(_offset.get() - calc);
|
|
}
|
|
} else {
|
|
_null_init_done = true;
|
|
}
|
|
_mag_body_last = mag_body_new - calc;
|
|
_last_dcm_matrix = dcm_matrix;
|
|
}
|
|
|
|
|
|
void
|
|
Compass::null_offsets_enable(void)
|
|
{
|
|
_null_init_done = false;
|
|
_null_enable = true;
|
|
}
|
|
|
|
void
|
|
Compass::null_offsets_disable(void)
|
|
{
|
|
_null_init_done = false;
|
|
_null_enable = false;
|
|
}
|