ardupilot/APMrover2/system.pde
2015-04-01 15:13:31 -07:00

509 lines
13 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
static const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"reboot", reboot_board},
{"help", main_menu_help}
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
static void run_cli(AP_HAL::UARTDriver *port)
{
// disable the failsafe code in the CLI
hal.scheduler->register_timer_failsafe(NULL,1);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
// initialise console serial port
serial_manager.init_console();
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n"),
hal.util->available_memory());
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
load_parameters();
BoardConfig.init();
// initialise serial ports
serial_manager.init();
ServoRelayEvents.set_channel_mask(0xFFF0);
set_control_channels();
battery.init();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// init the GCS
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// setup serial port for telem1
gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
#if MAVLINK_COMM_NUM_BUFFERS > 2
// setup serial port for telem2
gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);
#endif
// setup frsky telemetry
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.init(serial_manager);
#endif
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
if (!DataFlash.CardInserted()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
do_erase_logs();
}
if (g.log_bitmask != 0) {
start_logging();
}
#endif
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
apm1_adc.Init(); // APM ADC library initialization
#endif
if (g.compass_enabled==true) {
if (!compass.init()|| !compass.read()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
//compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
}
// initialise sonar
init_sonar();
// and baro for EKF
init_barometer();
// Do GPS init
gps.init(&DataFlash, serial_manager);
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
relay.init();
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(serial_manager);
#endif
/*
setup the 'main loop is dead' check. Note that this relies on
the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
#if CLI_ENABLED == ENABLED
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (g.cli_enabled == 1) {
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
gcs[1].get_uart()->println_P(msg);
}
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
gcs[2].get_uart()->println_P(msg);
}
}
#endif
startup_ground();
if (should_log(MASK_LOG_CMD)) {
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
}
set_mode((enum mode)g.initial_mode.get());
// set the correct flight mode
// ---------------------------
reset_control_switch();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
static void startup_ground(void)
{
set_mode(INITIALISING);
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
#if(GROUND_START_DELAY > 0)
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
delay(GROUND_START_DELAY * 1000);
#endif
//IMU ground start
//------------------------
//
startup_INS_ground();
// read the radio to set trims
// ---------------------------
trim_radio();
// initialise mission library
mission.init();
// we don't want writes to the serial port to cause us to pause
// so set serial ports non-blocking once we are ready to drive
serial_manager.set_blocking_writes_all(false);
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive."));
}
/*
set the in_reverse flag
reset the throttle integrator if this changes in_reverse
*/
static void set_reverse(bool reverse)
{
if (in_reverse == reverse) {
return;
}
g.pidSpeedThrottle.reset_I();
in_reverse = reverse;
}
static void set_mode(enum mode mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
throttle_last = 0;
throttle = 500;
set_reverse(false);
g.pidSpeedThrottle.reset_I();
if (control_mode != AUTO) {
auto_triggered = false;
}
switch(control_mode)
{
case MANUAL:
case HOLD:
case LEARNING:
case STEERING:
break;
case AUTO:
rtl_complete = false;
restart_nav();
break;
case RTL:
do_RTL();
break;
default:
do_RTL();
break;
}
if (should_log(MASK_LOG_MODE)) {
DataFlash.Log_Write_Mode(control_mode);
}
}
/*
set_mode() wrapper for MAVLink SET_MODE
*/
static bool mavlink_set_mode(uint8_t mode)
{
switch (mode) {
case MANUAL:
case HOLD:
case LEARNING:
case STEERING:
case AUTO:
case RTL:
set_mode((enum mode)mode);
return true;
}
return false;
}
/*
called to set/unset a failsafe event.
*/
static void failsafe_trigger(uint8_t failsafe_type, bool on)
{
uint8_t old_bits = failsafe.bits;
if (on) {
failsafe.bits |= failsafe_type;
} else {
failsafe.bits &= ~failsafe_type;
}
if (old_bits == 0 && failsafe.bits != 0) {
// a failsafe event has started
failsafe.start_time = millis();
}
if (failsafe.triggered != 0 && failsafe.bits == 0) {
// a failsafe event has ended
gcs_send_text_fmt(PSTR("Failsafe ended"));
}
failsafe.triggered &= failsafe.bits;
if (failsafe.triggered == 0 &&
failsafe.bits != 0 &&
millis() - failsafe.start_time > g.fs_timeout*1000 &&
control_mode != RTL &&
control_mode != HOLD) {
failsafe.triggered = failsafe.bits;
gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered);
switch (g.fs_action) {
case 0:
break;
case 1:
set_mode(RTL);
break;
case 2:
set_mode(HOLD);
break;
}
}
}
static void startup_INS_ground(void)
{
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC..."));
mavlink_delay(500);
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
// -----------------------
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move vehicle"));
mavlink_delay(1000);
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND);
AP_InertialSensor::Start_style style;
if (g.skip_gyro_cal) {
style = AP_InertialSensor::WARM_START;
} else {
style = AP_InertialSensor::COLD_START;
}
ins.init(style, ins_sample_rate);
ahrs.reset();
}
// updates the notify state
// should be called at 50hz
static void update_notify()
{
notify.update();
}
static void resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
perf_mon_timer = millis();
}
static void check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL1_BAUD.
if (usb_connected) {
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_Console, 0);
} else {
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_MAVLink, 0);
}
#endif
}
static void
print_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case MANUAL:
port->print_P(PSTR("Manual"));
break;
case HOLD:
port->print_P(PSTR("HOLD"));
break;
case LEARNING:
port->print_P(PSTR("Learning"));
break;
case STEERING:
port->print_P(PSTR("Steering"));
break;
case AUTO:
port->print_P(PSTR("AUTO"));
break;
case RTL:
port->print_P(PSTR("RTL"));
break;
default:
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}
/*
check a digitial pin for high,low (1/0)
*/
static uint8_t check_digital_pin(uint8_t pin)
{
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin);
if (dpin == -1) {
return 0;
}
// ensure we are in input mode
hal.gpio->pinMode(dpin, HAL_GPIO_INPUT);
// enable pullup
hal.gpio->write(dpin, 1);
return hal.gpio->read(dpin);
}
/*
should we log a message type now?
*/
static bool should_log(uint32_t mask)
{
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
if (ret && !DataFlash.logging_started() && !in_log_download) {
// we have to set in_mavlink_delay to prevent logging while
// writing headers
in_mavlink_delay = true;
start_logging();
in_mavlink_delay = false;
}
return ret;
}
/*
send FrSky telemetry. Should be called at 5Hz by scheduler
*/
static void telemetry_send(void)
{
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.send_frames((uint8_t)control_mode);
#endif
}