ardupilot/libraries/AP_AHRS/AP_AHRS_SIM.cpp

282 lines
7.5 KiB
C++

#include "AP_AHRS_SIM.h"
#if AP_AHRS_SIM_ENABLED
#include "AP_AHRS.h"
bool AP_AHRS_SIM::get_location(Location &loc) const
{
if (_sitl == nullptr) {
return false;
}
const struct SITL::sitl_fdm &fdm = _sitl->state;
loc = {};
loc.lat = fdm.latitude * 1e7;
loc.lng = fdm.longitude * 1e7;
loc.alt = fdm.altitude*100;
return true;
}
bool AP_AHRS_SIM::get_velocity_NED(Vector3f &vec) const
{
if (_sitl == nullptr) {
return false;
}
const struct SITL::sitl_fdm &fdm = _sitl->state;
vec = Vector3f(fdm.speedN, fdm.speedE, fdm.speedD);
return true;
}
bool AP_AHRS_SIM::wind_estimate(Vector3f &wind) const
{
if (_sitl == nullptr) {
return false;
}
wind = _sitl->state.wind_ef;
return true;
}
bool AP_AHRS_SIM::airspeed_estimate(float &airspeed_ret) const
{
if (_sitl == nullptr) {
return false;
}
airspeed_ret = _sitl->state.airspeed;
return true;
}
bool AP_AHRS_SIM::airspeed_estimate(uint8_t index, float &airspeed_ret) const
{
return airspeed_estimate(airspeed_ret);
}
bool AP_AHRS_SIM::get_quaternion(Quaternion &quat) const
{
if (_sitl == nullptr) {
return false;
}
const struct SITL::sitl_fdm &fdm = _sitl->state;
quat = fdm.quaternion;
return true;
}
Vector2f AP_AHRS_SIM::groundspeed_vector(void)
{
if (_sitl == nullptr) {
return Vector2f{};
}
const struct SITL::sitl_fdm &fdm = _sitl->state;
return Vector2f(fdm.speedN, fdm.speedE);
}
bool AP_AHRS_SIM::get_vert_pos_rate(float &velocity) const
{
if (_sitl == nullptr) {
return false;
}
velocity = _sitl->state.speedD;
return true;
}
bool AP_AHRS_SIM::get_hagl(float &height) const
{
if (_sitl == nullptr) {
return false;
}
height = _sitl->state.altitude - AP::ahrs().get_home().alt*0.01f;
return true;
}
bool AP_AHRS_SIM::get_relative_position_NED_origin(Vector3f &vec) const
{
if (_sitl == nullptr) {
return false;
}
Location loc, orgn;
if (!get_location(loc) ||
!get_origin(orgn)) {
return false;
}
const Vector2f diff2d = orgn.get_distance_NE(loc);
const struct SITL::sitl_fdm &fdm = _sitl->state;
vec = Vector3f(diff2d.x, diff2d.y,
-(fdm.altitude - orgn.alt*0.01f));
return true;
}
bool AP_AHRS_SIM::get_relative_position_NE_origin(Vector2f &posNE) const
{
Location loc, orgn;
if (!get_location(loc) ||
!get_origin(orgn)) {
return false;
}
posNE = orgn.get_distance_NE(loc);
return true;
}
bool AP_AHRS_SIM::get_relative_position_D_origin(float &posD) const
{
if (_sitl == nullptr) {
return false;
}
const struct SITL::sitl_fdm &fdm = _sitl->state;
Location orgn;
if (!get_origin(orgn)) {
return false;
}
posD = -(fdm.altitude - orgn.alt*0.01f);
return true;
}
bool AP_AHRS_SIM::get_filter_status(nav_filter_status &status) const
{
memset(&status, 0, sizeof(status));
status.flags.attitude = 1;
status.flags.horiz_vel = 1;
status.flags.vert_vel = 1;
status.flags.horiz_pos_rel = 1;
status.flags.horiz_pos_abs = 1;
status.flags.vert_pos = 1;
status.flags.pred_horiz_pos_rel = 1;
status.flags.pred_horiz_pos_abs = 1;
status.flags.using_gps = 1;
return true;
}
void AP_AHRS_SIM::get_control_limits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
{
// same as EKF2 for no optical flow
ekfGndSpdLimit = 400.0f;
ekfNavVelGainScaler = 1.0f;
}
bool AP_AHRS_SIM::get_mag_offsets(uint8_t mag_idx, Vector3f &magOffsets) const
{
magOffsets.zero();
return true;
}
void AP_AHRS_SIM::send_ekf_status_report(GCS_MAVLINK &link) const
{
// send status report with everything looking good
const uint16_t flags =
EKF_ATTITUDE | /* Set if EKF's attitude estimate is good. | */
EKF_VELOCITY_HORIZ | /* Set if EKF's horizontal velocity estimate is good. | */
EKF_VELOCITY_VERT | /* Set if EKF's vertical velocity estimate is good. | */
EKF_POS_HORIZ_REL | /* Set if EKF's horizontal position (relative) estimate is good. | */
EKF_POS_HORIZ_ABS | /* Set if EKF's horizontal position (absolute) estimate is good. | */
EKF_POS_VERT_ABS | /* Set if EKF's vertical position (absolute) estimate is good. | */
EKF_POS_VERT_AGL | /* Set if EKF's vertical position (above ground) estimate is good. | */
//EKF_CONST_POS_MODE | /* EKF is in constant position mode and does not know it's absolute or relative position. | */
EKF_PRED_POS_HORIZ_REL | /* Set if EKF's predicted horizontal position (relative) estimate is good. | */
EKF_PRED_POS_HORIZ_ABS; /* Set if EKF's predicted horizontal position (absolute) estimate is good. | */
mavlink_msg_ekf_status_report_send(link.get_chan(), flags, 0, 0, 0, 0, 0, 0);
}
bool AP_AHRS_SIM::get_origin(Location &ret) const
{
if (_sitl == nullptr) {
return false;
}
ret = _sitl->state.home;
return true;
}
// return the innovations for the specified instance
// An out of range instance (eg -1) returns data for the primary instance
bool AP_AHRS_SIM::get_innovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const
{
velInnov.zero();
posInnov.zero();
magInnov.zero();
tasInnov = 0.0f;
yawInnov = 0.0f;
return true;
}
bool AP_AHRS_SIM::get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar) const
{
velVar = 0;
posVar = 0;
hgtVar = 0;
magVar.zero();
tasVar = 0;
return true;
}
void AP_AHRS_SIM::get_results(AP_AHRS_Backend::Estimates &results)
{
if (_sitl == nullptr) {
_sitl = AP::sitl();
if (_sitl == nullptr) {
return;
}
}
const struct SITL::sitl_fdm &fdm = _sitl->state;
const AP_InertialSensor &_ins = AP::ins();
fdm.quaternion.rotation_matrix(results.dcm_matrix);
results.dcm_matrix = results.dcm_matrix * AP::ahrs().get_rotation_vehicle_body_to_autopilot_body();
results.dcm_matrix.to_euler(&results.roll_rad, &results.pitch_rad, &results.yaw_rad);
results.gyro_estimate = _ins.get_gyro();
results.gyro_drift.zero();
const Vector3f &accel = _ins.get_accel();
results.accel_ef = results.dcm_matrix * AP::ahrs().get_rotation_autopilot_body_to_vehicle_body() * accel;
#if HAL_NAVEKF3_AVAILABLE
if (_sitl->odom_enable) {
// use SITL states to write body frame odometry data at 20Hz
uint32_t timeStamp_ms = AP_HAL::millis();
if (timeStamp_ms - _last_body_odm_update_ms > 50) {
const float quality = 100.0f;
const Vector3f posOffset(0.0f, 0.0f, 0.0f);
const float delTime = 0.001f * (timeStamp_ms - _last_body_odm_update_ms);
_last_body_odm_update_ms = timeStamp_ms;
timeStamp_ms -= (timeStamp_ms - _last_body_odm_update_ms)/2; // correct for first order hold average delay
Vector3f delAng = _ins.get_gyro();
delAng *= delTime;
// rotate earth velocity into body frame and calculate delta position
Matrix3f Tbn;
Tbn.from_euler(radians(fdm.rollDeg),radians(fdm.pitchDeg),radians(fdm.yawDeg));
const Vector3f earth_vel(fdm.speedN,fdm.speedE,fdm.speedD);
const Vector3f delPos = Tbn.transposed() * (earth_vel * delTime);
// write to EKF
EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, 0, posOffset);
}
}
#endif // HAL_NAVEKF3_AVAILABLE
}
#endif // AP_AHRS_SIM_ENABLED