ardupilot/ArduPlane/Log.pde
2013-01-13 17:31:42 +11:00

639 lines
19 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if LOGGING_ENABLED == ENABLED
// Code to Write and Read packets from DataFlash.log memory
// Code to interact with the user to dump or erase logs
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t dump_log(uint8_t argc, const Menu::arg *argv);
static int8_t erase_logs(uint8_t argc, const Menu::arg *argv);
static int8_t select_logs(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
//static int8_t help_log(uint8_t argc, const Menu::arg *argv)
/*{
* cliSerial->printf_P(PSTR("\n"
* "Commands:\n"
* " dump <n>"
* " erase (all logs)\n"
* " enable <name> | all\n"
* " disable <name> | all\n"
* "\n"));
* return 0;
* }*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
static const struct Menu::command log_menu_commands[] PROGMEM = {
{"dump", dump_log},
{"erase", erase_logs},
{"enable", select_logs},
{"disable", select_logs}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, print_log_menu);
static bool
print_log_menu(void)
{
int16_t log_start;
int16_t log_end;
int16_t temp;
int16_t last_log_num = DataFlash.find_last_log();
uint16_t num_logs = DataFlash.get_num_logs();
cliSerial->println_P(PSTR("logs enabled: "));
if (0 == g.log_bitmask) {
cliSerial->println_P(PSTR("none"));
}else{
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(# _s))
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
PLOG(PM);
PLOG(CTUN);
PLOG(NTUN);
PLOG(MODE);
PLOG(RAW);
PLOG(CMD);
PLOG(CUR);
#undef PLOG
}
cliSerial->println();
if (num_logs == 0) {
cliSerial->printf_P(PSTR("\nNo logs\n\n"));
}else{
cliSerial->printf_P(PSTR("\n%d logs\n"), (int)num_logs);
for(int16_t i=num_logs; i>=1; i--) {
int16_t last_log_start = log_start, last_log_end = log_end;
temp = last_log_num-i+1;
DataFlash.get_log_boundaries(temp, log_start, log_end);
cliSerial->printf_P(PSTR("Log %d, start %d, end %d\n"), (int)temp, (int)log_start, (int)log_end);
if (last_log_start == log_start && last_log_end == log_end) {
// we are printing bogus logs
break;
}
}
cliSerial->println();
}
return(true);
}
static int8_t
dump_log(uint8_t argc, const Menu::arg *argv)
{
int16_t dump_log;
int16_t dump_log_start;
int16_t dump_log_end;
int16_t last_log_num;
// check that the requested log number can be read
dump_log = argv[1].i;
last_log_num = DataFlash.find_last_log();
if (dump_log == -2) {
for(uint16_t count=1; count<=DataFlash.df_NumPages; count++) {
DataFlash.StartRead(count);
cliSerial->printf_P(PSTR("DF page, log file #, log page: %d,\t"), (int)count);
cliSerial->printf_P(PSTR("%d,\t"), (int)DataFlash.GetFileNumber());
cliSerial->printf_P(PSTR("%d\n"), (int)DataFlash.GetFilePage());
}
return(-1);
} else if (dump_log <= 0) {
cliSerial->printf_P(PSTR("dumping all\n"));
Log_Read(1, DataFlash.df_NumPages);
return(-1);
} else if ((argc != 2)
|| (dump_log <= (last_log_num - DataFlash.get_num_logs()))
|| (dump_log > last_log_num))
{
cliSerial->printf_P(PSTR("bad log number\n"));
return(-1);
}
DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end);
cliSerial->printf_P(PSTR("Dumping Log %d, start pg %d, end pg %d\n"),
(int)dump_log,
(int)dump_log_start,
(int)dump_log_end);
Log_Read(dump_log_start, dump_log_end);
cliSerial->printf_P(PSTR("Done\n"));
return 0;
}
static void do_erase_logs(void)
{
gcs_send_text_P(SEVERITY_LOW, PSTR("Erasing logs"));
DataFlash.EraseAll();
gcs_send_text_P(SEVERITY_LOW, PSTR("Log erase complete"));
}
static int8_t
erase_logs(uint8_t argc, const Menu::arg *argv)
{
in_mavlink_delay = true;
do_erase_logs();
in_mavlink_delay = false;
return 0;
}
static int8_t
select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits;
if (argc != 2) {
cliSerial->printf_P(PSTR("missing log type\n"));
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp_P(argv[1].str, PSTR("all"))) {
bits = ~0;
} else {
#define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(# _s))) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(RAW);
TARG(CMD);
TARG(CUR);
#undef TARG
}
if (!strcasecmp_P(argv[0].str, PSTR("enable"))) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
}else{
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
static int8_t
process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
return 0;
}
struct log_Attitute {
LOG_PACKET_HEADER;
int32_t roll;
int32_t pitch;
int32_t yaw;
};
// Write an attitude packet. Total length : 10 bytes
static void Log_Write_Attitude(void)
{
struct log_Attitute pkt = {
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG),
roll : ahrs.roll_sensor,
pitch : ahrs.pitch_sensor,
yaw : ahrs.yaw_sensor
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// Read an attitude packet
static void Log_Read_Attitude()
{
struct log_Attitute pkt;
DataFlash.ReadPacket(&pkt, sizeof(pkt));
cliSerial->printf_P(PSTR("ATT: %ld, %ld, %ld\n"),
(long)pkt.roll,
(long)pkt.pitch,
(long)pkt.yaw);
}
// Write a performance monitoring packet. Total length : 19 bytes
static void Log_Write_Performance()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PERFORMANCE_MSG);
DataFlash.WriteLong(millis()- perf_mon_timer);
DataFlash.WriteInt((int16_t)mainLoop_count);
DataFlash.WriteInt(G_Dt_max);
DataFlash.WriteByte(0);
DataFlash.WriteByte(0);
DataFlash.WriteByte(ahrs.renorm_range_count);
DataFlash.WriteByte(ahrs.renorm_blowup_count);
DataFlash.WriteByte(gps_fix_count);
DataFlash.WriteInt(1); // AHRS health
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().x * 1000));
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().y * 1000));
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().z * 1000));
DataFlash.WriteInt(pmTest1);
}
// Write a command processing packet. Total length : 19 bytes
//void Log_Write_Cmd(byte num, byte id, byte p1, int32_t alt, int32_t lat, int32_t lng)
static void Log_Write_Cmd(uint8_t num, struct Location *wp)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CMD_MSG);
DataFlash.WriteByte(num);
DataFlash.WriteByte(wp->id);
DataFlash.WriteByte(wp->p1);
DataFlash.WriteLong(wp->alt);
DataFlash.WriteLong(wp->lat);
DataFlash.WriteLong(wp->lng);
}
static void Log_Write_Startup(uint8_t type)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_STARTUP_MSG);
DataFlash.WriteByte(type);
DataFlash.WriteByte(g.command_total);
// create a location struct to hold the temp Waypoints for printing
struct Location cmd = get_cmd_with_index(0);
Log_Write_Cmd(0, &cmd);
for (int16_t i = 1; i <= g.command_total; i++) {
cmd = get_cmd_with_index(i);
Log_Write_Cmd(i, &cmd);
}
}
// Write a control tuning packet. Total length : 22 bytes
static void Log_Write_Control_Tuning()
{
Vector3f accel = ins.get_accel();
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG);
DataFlash.WriteInt(g.channel_roll.servo_out);
DataFlash.WriteInt(nav_roll_cd);
DataFlash.WriteInt((int)ahrs.roll_sensor);
DataFlash.WriteInt((int)(g.channel_pitch.servo_out));
DataFlash.WriteInt((int)nav_pitch_cd);
DataFlash.WriteInt((int)ahrs.pitch_sensor);
DataFlash.WriteInt((int)(g.channel_throttle.servo_out));
DataFlash.WriteInt((int)(g.channel_rudder.servo_out));
DataFlash.WriteInt((int)(accel.y * 10000));
}
// Write a navigation tuning packet. Total length : 18 bytes
static void Log_Write_Nav_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_NAV_TUNING_MSG);
DataFlash.WriteInt((uint16_t)ahrs.yaw_sensor);
DataFlash.WriteInt((int16_t)wp_distance);
DataFlash.WriteInt(target_bearing_cd);
DataFlash.WriteInt(nav_bearing_cd);
DataFlash.WriteInt(altitude_error_cm);
DataFlash.WriteInt((int16_t)airspeed.get_airspeed_cm());
DataFlash.WriteInt(0); // was nav_gain_scaler
}
// Write a mode packet. Total length : 5 bytes
static void Log_Write_Mode(uint8_t mode)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MODE_MSG);
DataFlash.WriteByte(mode);
}
struct log_GPS {
LOG_PACKET_HEADER;
uint32_t gps_time;
uint8_t num_sats;
int32_t latitude;
int32_t longitude;
int32_t rel_altitude;
int32_t altitude;
uint32_t ground_speed;
int32_t ground_course;
};
// Write an GPS packet. Total length : 30 bytes
static void Log_Write_GPS(void)
{
struct log_GPS pkt = {
LOG_PACKET_HEADER_INIT(LOG_GPS_MSG),
gps_time : g_gps->time,
num_sats : g_gps->num_sats,
latitude : g_gps->latitude,
longitude : g_gps->longitude,
rel_altitude : current_loc.alt,
altitude : g_gps->altitude,
ground_speed : g_gps->ground_speed,
ground_course : g_gps->ground_course
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// Read a GPS packet
static void Log_Read_GPS()
{
struct log_GPS pkt;
DataFlash.ReadPacket(&pkt, sizeof(pkt));
cliSerial->printf_P(PSTR("GPS, %ld, %u, %.7f, %.7f, %4.4f, %4.4f, %d, %ld\n"),
(long)pkt.gps_time,
(unsigned)pkt.num_sats,
pkt.latitude*1.0e-7,
pkt.longitude*1.0e-7,
pkt.rel_altitude*0.01,
pkt.altitude*0.01,
(unsigned long)pkt.ground_speed,
(long)pkt.ground_course);
}
struct log_Raw {
LOG_PACKET_HEADER;
Vector3f gyro;
Vector3f accel;
};
// Write an raw accel/gyro data packet. Total length : 28 bytes
static void Log_Write_Raw()
{
struct log_Raw pkt = {
LOG_PACKET_HEADER_INIT(LOG_RAW_MSG),
gyro : ins.get_gyro(),
accel : ins.get_accel()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// Read a raw accel/gyro packet
static void Log_Read_Raw()
{
struct log_Raw pkt;
DataFlash.ReadPacket(&pkt, sizeof(pkt));
cliSerial->printf_P(PSTR("RAW: %f, %f, %f, %f, %f, %f\n"),
pkt.gyro.x,
pkt.gyro.y,
pkt.gyro.z,
pkt.accel.x,
pkt.accel.y,
pkt.accel.z);
}
static void Log_Write_Current()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteInt(g.channel_throttle.control_in);
DataFlash.WriteInt((int)(battery_voltage1 * 100.0));
DataFlash.WriteInt((int)(current_amps1 * 100.0));
DataFlash.WriteInt((int)current_total1);
}
// Read a Current packet
static void Log_Read_Current()
{
cliSerial->printf_P(PSTR("CURR: %d, %4.4f, %4.4f, %d\n"),
(int)DataFlash.ReadInt(),
((float)DataFlash.ReadInt() / 100.f),
((float)DataFlash.ReadInt() / 100.f),
(int)DataFlash.ReadInt());
}
// Read an control tuning packet
static void Log_Read_Control_Tuning()
{
float logvar;
cliSerial->printf_P(PSTR("CTUN:"));
for (int16_t y = 1; y < 10; y++) {
logvar = DataFlash.ReadInt();
if(y < 8) logvar = logvar/100.f;
if(y == 9) logvar = logvar/10000.f;
cliSerial->print(logvar);
print_comma();
}
cliSerial->println();
}
// Read a nav tuning packet
static void Log_Read_Nav_Tuning()
{
int16_t d[7];
for (int8_t i=0; i<7; i++) {
d[i] = DataFlash.ReadInt();
}
cliSerial->printf_P(PSTR("NTUN: %4.4f, %d, %4.4f, %4.4f, %4.4f, %4.4f, %4.4f,\n"), // \n
d[0]/100.0,
(int)d[1],
((uint16_t)d[2])/100.0,
((uint16_t)d[3])/100.0,
d[4]/100.0,
d[5]/100.0,
d[5]/1000.0);
}
// Read a performance packet
static void Log_Read_Performance()
{
int32_t pm_time;
int16_t logvar;
cliSerial->printf_P(PSTR("PM:"));
pm_time = DataFlash.ReadLong();
cliSerial->print(pm_time);
print_comma();
for (int16_t y = 1; y <= 12; y++) {
if(y < 3 || y > 7) {
logvar = DataFlash.ReadInt();
}else{
logvar = DataFlash.ReadByte();
}
cliSerial->print(logvar);
print_comma();
}
cliSerial->println();
}
// Read a command processing packet
static void Log_Read_Cmd()
{
uint8_t logvarb;
int32_t logvarl;
cliSerial->printf_P(PSTR("CMD:"));
for(int16_t i = 1; i < 4; i++) {
logvarb = DataFlash.ReadByte();
cliSerial->print(logvarb, DEC);
print_comma();
}
for(int16_t i = 1; i < 4; i++) {
logvarl = DataFlash.ReadLong();
cliSerial->print(logvarl, DEC);
print_comma();
}
cliSerial->println();
}
static void Log_Read_Startup()
{
uint8_t logbyte = DataFlash.ReadByte();
if (logbyte == TYPE_AIRSTART_MSG)
cliSerial->printf_P(PSTR("AIR START - "));
else if (logbyte == TYPE_GROUNDSTART_MSG)
cliSerial->printf_P(PSTR("GROUND START - "));
else
cliSerial->printf_P(PSTR("UNKNOWN STARTUP - "));
cliSerial->printf_P(PSTR(" %d commands in memory\n"),(int)DataFlash.ReadByte());
}
// Read a mode packet
static void Log_Read_Mode()
{
cliSerial->printf_P(PSTR("MOD:"));
print_flight_mode(DataFlash.ReadByte());
}
// Read the DataFlash.log memory : Packet Parser
static void Log_Read(int16_t start_page, int16_t end_page)
{
int16_t packet_count = 0;
#ifdef AIRFRAME_NAME
cliSerial->printf_P(PSTR((AIRFRAME_NAME)
#endif
cliSerial->printf_P(PSTR("\n" THISFIRMWARE
"\nFree RAM: %u\n"),
memcheck_available_memory());
if(start_page > end_page)
{
packet_count = Log_Read_Process(start_page, DataFlash.df_NumPages);
packet_count += Log_Read_Process(1, end_page);
} else {
packet_count = Log_Read_Process(start_page, end_page);
}
cliSerial->printf_P(PSTR("Number of packets read: %d\n"), (int) packet_count);
}
// Read the DataFlash.log memory : Packet Parser
static int16_t Log_Read_Process(int16_t start_page, int16_t end_page)
{
uint8_t data;
uint8_t log_step = 0;
int16_t page = start_page;
int16_t packet_count = 0;
DataFlash.StartRead(start_page);
while (page < end_page && page != -1) {
data = DataFlash.ReadByte();
switch(log_step) // This is a state machine to read the packets
{
case 0:
if(data == HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data == HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
log_step = 0;
switch (data) {
case LOG_ATTITUDE_MSG:
Log_Read_Attitude();
break;
case LOG_MODE_MSG:
Log_Read_Mode();
break;
case LOG_CONTROL_TUNING_MSG:
Log_Read_Control_Tuning();
break;
case LOG_NAV_TUNING_MSG:
Log_Read_Nav_Tuning();
break;
case LOG_PERFORMANCE_MSG:
Log_Read_Performance();
break;
case LOG_RAW_MSG:
Log_Read_Raw();
break;
case LOG_CMD_MSG:
Log_Read_Cmd();
break;
case LOG_CURRENT_MSG:
Log_Read_Current();
break;
case LOG_STARTUP_MSG:
Log_Read_Startup();
break;
case LOG_GPS_MSG:
Log_Read_GPS();
break;
}
break;
}
page = DataFlash.GetPage();
}
return packet_count;
}
#else // LOGGING_ENABLED
// dummy functions
static void Log_Write_Mode(uint8_t mode) {}
static void Log_Write_Startup(uint8_t type) {}
static void Log_Write_Cmd(uint8_t num, struct Location *wp) {}
static void Log_Write_Current() {}
static void Log_Write_Nav_Tuning() {}
static void Log_Write_GPS() {}
static void Log_Write_Performance() {}
static void Log_Write_Attitude() {}
static void Log_Write_Control_Tuning() {}
static void Log_Write_Raw() {}
static int8_t process_logs(uint8_t argc, const Menu::arg *argv) {
return 0;
}
#endif // LOGGING_ENABLED