// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if LOGGING_ENABLED == ENABLED // Code to Write and Read packets from DataFlash.log memory // Code to interact with the user to dump or erase logs // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t dump_log(uint8_t argc, const Menu::arg *argv); static int8_t erase_logs(uint8_t argc, const Menu::arg *argv); static int8_t select_logs(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory //static int8_t help_log(uint8_t argc, const Menu::arg *argv) /*{ * cliSerial->printf_P(PSTR("\n" * "Commands:\n" * " dump " * " erase (all logs)\n" * " enable | all\n" * " disable | all\n" * "\n")); * return 0; * }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command log_menu_commands[] PROGMEM = { {"dump", dump_log}, {"erase", erase_logs}, {"enable", select_logs}, {"disable", select_logs} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, print_log_menu); static bool print_log_menu(void) { int16_t log_start; int16_t log_end; int16_t temp; int16_t last_log_num = DataFlash.find_last_log(); uint16_t num_logs = DataFlash.get_num_logs(); cliSerial->println_P(PSTR("logs enabled: ")); if (0 == g.log_bitmask) { cliSerial->println_P(PSTR("none")); }else{ // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // the bit being set and print the name of the log option to suit. #define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(# _s)) PLOG(ATTITUDE_FAST); PLOG(ATTITUDE_MED); PLOG(GPS); PLOG(PM); PLOG(CTUN); PLOG(NTUN); PLOG(MODE); PLOG(RAW); PLOG(CMD); PLOG(CUR); #undef PLOG } cliSerial->println(); if (num_logs == 0) { cliSerial->printf_P(PSTR("\nNo logs\n\n")); }else{ cliSerial->printf_P(PSTR("\n%d logs\n"), (int)num_logs); for(int16_t i=num_logs; i>=1; i--) { int16_t last_log_start = log_start, last_log_end = log_end; temp = last_log_num-i+1; DataFlash.get_log_boundaries(temp, log_start, log_end); cliSerial->printf_P(PSTR("Log %d, start %d, end %d\n"), (int)temp, (int)log_start, (int)log_end); if (last_log_start == log_start && last_log_end == log_end) { // we are printing bogus logs break; } } cliSerial->println(); } return(true); } static int8_t dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log; int16_t dump_log_start; int16_t dump_log_end; int16_t last_log_num; // check that the requested log number can be read dump_log = argv[1].i; last_log_num = DataFlash.find_last_log(); if (dump_log == -2) { for(uint16_t count=1; count<=DataFlash.df_NumPages; count++) { DataFlash.StartRead(count); cliSerial->printf_P(PSTR("DF page, log file #, log page: %d,\t"), (int)count); cliSerial->printf_P(PSTR("%d,\t"), (int)DataFlash.GetFileNumber()); cliSerial->printf_P(PSTR("%d\n"), (int)DataFlash.GetFilePage()); } return(-1); } else if (dump_log <= 0) { cliSerial->printf_P(PSTR("dumping all\n")); Log_Read(1, DataFlash.df_NumPages); return(-1); } else if ((argc != 2) || (dump_log <= (last_log_num - DataFlash.get_num_logs())) || (dump_log > last_log_num)) { cliSerial->printf_P(PSTR("bad log number\n")); return(-1); } DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end); cliSerial->printf_P(PSTR("Dumping Log %d, start pg %d, end pg %d\n"), (int)dump_log, (int)dump_log_start, (int)dump_log_end); Log_Read(dump_log_start, dump_log_end); cliSerial->printf_P(PSTR("Done\n")); return 0; } static void do_erase_logs(void) { gcs_send_text_P(SEVERITY_LOW, PSTR("Erasing logs")); DataFlash.EraseAll(); gcs_send_text_P(SEVERITY_LOW, PSTR("Log erase complete")); } static int8_t erase_logs(uint8_t argc, const Menu::arg *argv) { in_mavlink_delay = true; do_erase_logs(); in_mavlink_delay = false; return 0; } static int8_t select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { cliSerial->printf_P(PSTR("missing log type\n")); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp_P(argv[1].str, PSTR("all"))) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(# _s))) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(RAW); TARG(CMD); TARG(CUR); #undef TARG } if (!strcasecmp_P(argv[0].str, PSTR("enable"))) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } struct log_Attitute { LOG_PACKET_HEADER; int32_t roll; int32_t pitch; int32_t yaw; }; // Write an attitude packet. Total length : 10 bytes static void Log_Write_Attitude(void) { struct log_Attitute pkt = { LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG), roll : ahrs.roll_sensor, pitch : ahrs.pitch_sensor, yaw : ahrs.yaw_sensor }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Read an attitude packet static void Log_Read_Attitude() { struct log_Attitute pkt; DataFlash.ReadPacket(&pkt, sizeof(pkt)); cliSerial->printf_P(PSTR("ATT: %ld, %ld, %ld\n"), (long)pkt.roll, (long)pkt.pitch, (long)pkt.yaw); } // Write a performance monitoring packet. Total length : 19 bytes static void Log_Write_Performance() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_PERFORMANCE_MSG); DataFlash.WriteLong(millis()- perf_mon_timer); DataFlash.WriteInt((int16_t)mainLoop_count); DataFlash.WriteInt(G_Dt_max); DataFlash.WriteByte(0); DataFlash.WriteByte(0); DataFlash.WriteByte(ahrs.renorm_range_count); DataFlash.WriteByte(ahrs.renorm_blowup_count); DataFlash.WriteByte(gps_fix_count); DataFlash.WriteInt(1); // AHRS health DataFlash.WriteInt((int)(ahrs.get_gyro_drift().x * 1000)); DataFlash.WriteInt((int)(ahrs.get_gyro_drift().y * 1000)); DataFlash.WriteInt((int)(ahrs.get_gyro_drift().z * 1000)); DataFlash.WriteInt(pmTest1); } // Write a command processing packet. Total length : 19 bytes //void Log_Write_Cmd(byte num, byte id, byte p1, int32_t alt, int32_t lat, int32_t lng) static void Log_Write_Cmd(uint8_t num, struct Location *wp) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CMD_MSG); DataFlash.WriteByte(num); DataFlash.WriteByte(wp->id); DataFlash.WriteByte(wp->p1); DataFlash.WriteLong(wp->alt); DataFlash.WriteLong(wp->lat); DataFlash.WriteLong(wp->lng); } static void Log_Write_Startup(uint8_t type) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_STARTUP_MSG); DataFlash.WriteByte(type); DataFlash.WriteByte(g.command_total); // create a location struct to hold the temp Waypoints for printing struct Location cmd = get_cmd_with_index(0); Log_Write_Cmd(0, &cmd); for (int16_t i = 1; i <= g.command_total; i++) { cmd = get_cmd_with_index(i); Log_Write_Cmd(i, &cmd); } } // Write a control tuning packet. Total length : 22 bytes static void Log_Write_Control_Tuning() { Vector3f accel = ins.get_accel(); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG); DataFlash.WriteInt(g.channel_roll.servo_out); DataFlash.WriteInt(nav_roll_cd); DataFlash.WriteInt((int)ahrs.roll_sensor); DataFlash.WriteInt((int)(g.channel_pitch.servo_out)); DataFlash.WriteInt((int)nav_pitch_cd); DataFlash.WriteInt((int)ahrs.pitch_sensor); DataFlash.WriteInt((int)(g.channel_throttle.servo_out)); DataFlash.WriteInt((int)(g.channel_rudder.servo_out)); DataFlash.WriteInt((int)(accel.y * 10000)); } // Write a navigation tuning packet. Total length : 18 bytes static void Log_Write_Nav_Tuning() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_NAV_TUNING_MSG); DataFlash.WriteInt((uint16_t)ahrs.yaw_sensor); DataFlash.WriteInt((int16_t)wp_distance); DataFlash.WriteInt(target_bearing_cd); DataFlash.WriteInt(nav_bearing_cd); DataFlash.WriteInt(altitude_error_cm); DataFlash.WriteInt((int16_t)airspeed.get_airspeed_cm()); DataFlash.WriteInt(0); // was nav_gain_scaler } // Write a mode packet. Total length : 5 bytes static void Log_Write_Mode(uint8_t mode) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_MODE_MSG); DataFlash.WriteByte(mode); } struct log_GPS { LOG_PACKET_HEADER; uint32_t gps_time; uint8_t num_sats; int32_t latitude; int32_t longitude; int32_t rel_altitude; int32_t altitude; uint32_t ground_speed; int32_t ground_course; }; // Write an GPS packet. Total length : 30 bytes static void Log_Write_GPS(void) { struct log_GPS pkt = { LOG_PACKET_HEADER_INIT(LOG_GPS_MSG), gps_time : g_gps->time, num_sats : g_gps->num_sats, latitude : g_gps->latitude, longitude : g_gps->longitude, rel_altitude : current_loc.alt, altitude : g_gps->altitude, ground_speed : g_gps->ground_speed, ground_course : g_gps->ground_course }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Read a GPS packet static void Log_Read_GPS() { struct log_GPS pkt; DataFlash.ReadPacket(&pkt, sizeof(pkt)); cliSerial->printf_P(PSTR("GPS, %ld, %u, %.7f, %.7f, %4.4f, %4.4f, %d, %ld\n"), (long)pkt.gps_time, (unsigned)pkt.num_sats, pkt.latitude*1.0e-7, pkt.longitude*1.0e-7, pkt.rel_altitude*0.01, pkt.altitude*0.01, (unsigned long)pkt.ground_speed, (long)pkt.ground_course); } struct log_Raw { LOG_PACKET_HEADER; Vector3f gyro; Vector3f accel; }; // Write an raw accel/gyro data packet. Total length : 28 bytes static void Log_Write_Raw() { struct log_Raw pkt = { LOG_PACKET_HEADER_INIT(LOG_RAW_MSG), gyro : ins.get_gyro(), accel : ins.get_accel() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Read a raw accel/gyro packet static void Log_Read_Raw() { struct log_Raw pkt; DataFlash.ReadPacket(&pkt, sizeof(pkt)); cliSerial->printf_P(PSTR("RAW: %f, %f, %f, %f, %f, %f\n"), pkt.gyro.x, pkt.gyro.y, pkt.gyro.z, pkt.accel.x, pkt.accel.y, pkt.accel.z); } static void Log_Write_Current() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CURRENT_MSG); DataFlash.WriteInt(g.channel_throttle.control_in); DataFlash.WriteInt((int)(battery_voltage1 * 100.0)); DataFlash.WriteInt((int)(current_amps1 * 100.0)); DataFlash.WriteInt((int)current_total1); } // Read a Current packet static void Log_Read_Current() { cliSerial->printf_P(PSTR("CURR: %d, %4.4f, %4.4f, %d\n"), (int)DataFlash.ReadInt(), ((float)DataFlash.ReadInt() / 100.f), ((float)DataFlash.ReadInt() / 100.f), (int)DataFlash.ReadInt()); } // Read an control tuning packet static void Log_Read_Control_Tuning() { float logvar; cliSerial->printf_P(PSTR("CTUN:")); for (int16_t y = 1; y < 10; y++) { logvar = DataFlash.ReadInt(); if(y < 8) logvar = logvar/100.f; if(y == 9) logvar = logvar/10000.f; cliSerial->print(logvar); print_comma(); } cliSerial->println(); } // Read a nav tuning packet static void Log_Read_Nav_Tuning() { int16_t d[7]; for (int8_t i=0; i<7; i++) { d[i] = DataFlash.ReadInt(); } cliSerial->printf_P(PSTR("NTUN: %4.4f, %d, %4.4f, %4.4f, %4.4f, %4.4f, %4.4f,\n"), // \n d[0]/100.0, (int)d[1], ((uint16_t)d[2])/100.0, ((uint16_t)d[3])/100.0, d[4]/100.0, d[5]/100.0, d[5]/1000.0); } // Read a performance packet static void Log_Read_Performance() { int32_t pm_time; int16_t logvar; cliSerial->printf_P(PSTR("PM:")); pm_time = DataFlash.ReadLong(); cliSerial->print(pm_time); print_comma(); for (int16_t y = 1; y <= 12; y++) { if(y < 3 || y > 7) { logvar = DataFlash.ReadInt(); }else{ logvar = DataFlash.ReadByte(); } cliSerial->print(logvar); print_comma(); } cliSerial->println(); } // Read a command processing packet static void Log_Read_Cmd() { uint8_t logvarb; int32_t logvarl; cliSerial->printf_P(PSTR("CMD:")); for(int16_t i = 1; i < 4; i++) { logvarb = DataFlash.ReadByte(); cliSerial->print(logvarb, DEC); print_comma(); } for(int16_t i = 1; i < 4; i++) { logvarl = DataFlash.ReadLong(); cliSerial->print(logvarl, DEC); print_comma(); } cliSerial->println(); } static void Log_Read_Startup() { uint8_t logbyte = DataFlash.ReadByte(); if (logbyte == TYPE_AIRSTART_MSG) cliSerial->printf_P(PSTR("AIR START - ")); else if (logbyte == TYPE_GROUNDSTART_MSG) cliSerial->printf_P(PSTR("GROUND START - ")); else cliSerial->printf_P(PSTR("UNKNOWN STARTUP - ")); cliSerial->printf_P(PSTR(" %d commands in memory\n"),(int)DataFlash.ReadByte()); } // Read a mode packet static void Log_Read_Mode() { cliSerial->printf_P(PSTR("MOD:")); print_flight_mode(DataFlash.ReadByte()); } // Read the DataFlash.log memory : Packet Parser static void Log_Read(int16_t start_page, int16_t end_page) { int16_t packet_count = 0; #ifdef AIRFRAME_NAME cliSerial->printf_P(PSTR((AIRFRAME_NAME) #endif cliSerial->printf_P(PSTR("\n" THISFIRMWARE "\nFree RAM: %u\n"), memcheck_available_memory()); if(start_page > end_page) { packet_count = Log_Read_Process(start_page, DataFlash.df_NumPages); packet_count += Log_Read_Process(1, end_page); } else { packet_count = Log_Read_Process(start_page, end_page); } cliSerial->printf_P(PSTR("Number of packets read: %d\n"), (int) packet_count); } // Read the DataFlash.log memory : Packet Parser static int16_t Log_Read_Process(int16_t start_page, int16_t end_page) { uint8_t data; uint8_t log_step = 0; int16_t page = start_page; int16_t packet_count = 0; DataFlash.StartRead(start_page); while (page < end_page && page != -1) { data = DataFlash.ReadByte(); switch(log_step) // This is a state machine to read the packets { case 0: if(data == HEAD_BYTE1) // Head byte 1 log_step++; break; case 1: if(data == HEAD_BYTE2) // Head byte 2 log_step++; else log_step = 0; break; case 2: log_step = 0; switch (data) { case LOG_ATTITUDE_MSG: Log_Read_Attitude(); break; case LOG_MODE_MSG: Log_Read_Mode(); break; case LOG_CONTROL_TUNING_MSG: Log_Read_Control_Tuning(); break; case LOG_NAV_TUNING_MSG: Log_Read_Nav_Tuning(); break; case LOG_PERFORMANCE_MSG: Log_Read_Performance(); break; case LOG_RAW_MSG: Log_Read_Raw(); break; case LOG_CMD_MSG: Log_Read_Cmd(); break; case LOG_CURRENT_MSG: Log_Read_Current(); break; case LOG_STARTUP_MSG: Log_Read_Startup(); break; case LOG_GPS_MSG: Log_Read_GPS(); break; } break; } page = DataFlash.GetPage(); } return packet_count; } #else // LOGGING_ENABLED // dummy functions static void Log_Write_Mode(uint8_t mode) {} static void Log_Write_Startup(uint8_t type) {} static void Log_Write_Cmd(uint8_t num, struct Location *wp) {} static void Log_Write_Current() {} static void Log_Write_Nav_Tuning() {} static void Log_Write_GPS() {} static void Log_Write_Performance() {} static void Log_Write_Attitude() {} static void Log_Write_Control_Tuning() {} static void Log_Write_Raw() {} static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } #endif // LOGGING_ENABLED