ardupilot/libraries/AC_PID/AC_PID_2D.h

104 lines
3.7 KiB
C++

#pragma once
/// @file AC_PID_2D.h
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants.
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <stdlib.h>
#include <cmath>
#include <AP_Logger/AP_Logger.h>
/// @class AC_PID_2D
/// @brief Copter PID control class
class AC_PID_2D {
public:
// Constructor for PID
AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt);
// set time step in seconds
void set_dt(float dt) { _dt = dt; }
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated if it does not increase in the direction of the limit vector
Vector2f update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit);
Vector2f update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit);
// update the integral
// if the limit flag is set the integral is only allowed to shrink
void update_i(const Vector2f &limit);
// get results from pid controller
Vector2f get_p() const;
const Vector2f& get_i() const;
Vector2f get_d() const;
Vector2f get_ff();
const Vector2f& get_error() const { return _error; }
// reset the integrator
void reset_I() { _integrator.zero(); };
// reset_filter - input and D term filter will be reset to the next value provided to set_input()
void reset_filter() { _reset_filter = true; }
// save gain to eeprom
void save_gains();
// get accessors
AP_Float &kP() { return _kp; }
AP_Float &kI() { return _ki; }
AP_Float &kD() { return _kd; }
AP_Float &ff() { return _kff;}
AP_Float &filt_E_hz() { return _filt_E_hz; }
AP_Float &filt_D_hz() { return _filt_D_hz; }
float imax() const { return _kimax.get(); }
float get_filt_E_alpha() const;
float get_filt_D_alpha() const;
// set accessors
void kP(float v) { _kp.set(v); }
void kI(float v) { _ki.set(v); }
void kD(float v) { _kd.set(v); }
void ff(float v) { _kff.set(v); }
void imax(float v) { _kimax.set(fabsf(v)); }
void filt_E_hz(float hz) { _filt_E_hz.set(fabsf(hz)); }
void filt_D_hz(float hz) { _filt_D_hz.set(fabsf(hz)); }
// integrator setting functions
void set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i);
void set_integrator(const Vector2f& error, const Vector2f& i);
void set_integrator(const Vector3f& i) { set_integrator(Vector2f{i.x, i.y}); }
void set_integrator(const Vector2f& i);
const AP_Logger::PID_Info& get_pid_info_x(void) const { return _pid_info_x; }
const AP_Logger::PID_Info& get_pid_info_y(void) const { return _pid_info_y; }
// parameter var table
static const struct AP_Param::GroupInfo var_info[];
protected:
// parameters
AP_Float _kp;
AP_Float _ki;
AP_Float _kd;
AP_Float _kff;
AP_Float _kimax;
AP_Float _filt_E_hz; // PID error filter frequency in Hz
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
// internal variables
float _dt; // timestep in seconds
Vector2f _target; // target value to enable filtering
Vector2f _error; // error value to enable filtering
Vector2f _derivative; // last derivative from low-pass filter
Vector2f _integrator; // integrator value
bool _reset_filter; // true when input filter should be reset during next call to update_all
AP_Logger::PID_Info _pid_info_x;
AP_Logger::PID_Info _pid_info_y;
};