#pragma once /// @file AC_PID_2D.h /// @brief Generic PID algorithm, with EEPROM-backed storage of constants. #include #include #include #include #include /// @class AC_PID_2D /// @brief Copter PID control class class AC_PID_2D { public: // Constructor for PID AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt); // set time step in seconds void set_dt(float dt) { _dt = dt; } // update_all - set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated if it does not increase in the direction of the limit vector Vector2f update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit); Vector2f update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit); // update the integral // if the limit flag is set the integral is only allowed to shrink void update_i(const Vector2f &limit); // get results from pid controller Vector2f get_p() const; const Vector2f& get_i() const; Vector2f get_d() const; Vector2f get_ff(); const Vector2f& get_error() const { return _error; } // reset the integrator void reset_I() { _integrator.zero(); }; // reset_filter - input and D term filter will be reset to the next value provided to set_input() void reset_filter() { _reset_filter = true; } // save gain to eeprom void save_gains(); // get accessors AP_Float &kP() { return _kp; } AP_Float &kI() { return _ki; } AP_Float &kD() { return _kd; } AP_Float &ff() { return _kff;} AP_Float &filt_E_hz() { return _filt_E_hz; } AP_Float &filt_D_hz() { return _filt_D_hz; } float imax() const { return _kimax.get(); } float get_filt_E_alpha() const; float get_filt_D_alpha() const; // set accessors void kP(float v) { _kp.set(v); } void kI(float v) { _ki.set(v); } void kD(float v) { _kd.set(v); } void ff(float v) { _kff.set(v); } void imax(float v) { _kimax.set(fabsf(v)); } void filt_E_hz(float hz) { _filt_E_hz.set(fabsf(hz)); } void filt_D_hz(float hz) { _filt_D_hz.set(fabsf(hz)); } // integrator setting functions void set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i); void set_integrator(const Vector2f& error, const Vector2f& i); void set_integrator(const Vector3f& i) { set_integrator(Vector2f{i.x, i.y}); } void set_integrator(const Vector2f& i); const AP_Logger::PID_Info& get_pid_info_x(void) const { return _pid_info_x; } const AP_Logger::PID_Info& get_pid_info_y(void) const { return _pid_info_y; } // parameter var table static const struct AP_Param::GroupInfo var_info[]; protected: // parameters AP_Float _kp; AP_Float _ki; AP_Float _kd; AP_Float _kff; AP_Float _kimax; AP_Float _filt_E_hz; // PID error filter frequency in Hz AP_Float _filt_D_hz; // PID derivative filter frequency in Hz // internal variables float _dt; // timestep in seconds Vector2f _target; // target value to enable filtering Vector2f _error; // error value to enable filtering Vector2f _derivative; // last derivative from low-pass filter Vector2f _integrator; // integrator value bool _reset_filter; // true when input filter should be reset during next call to update_all AP_Logger::PID_Info _pid_info_x; AP_Logger::PID_Info _pid_info_y; };