ardupilot/ArduCopter/mode_acro_heli.cpp

157 lines
6.5 KiB
C++

#include "Copter.h"
#if MODE_ACRO_ENABLED
#if FRAME_CONFIG == HELI_FRAME
/*
* Init and run calls for acro flight mode for trad heli
*/
// heli_acro_init - initialise acro controller
bool ModeAcro_Heli::init(bool ignore_checks)
{
// if heli is equipped with a flybar, then tell the attitude controller to pass through controls directly to servos
attitude_control->use_flybar_passthrough(motors->has_flybar(), motors->supports_yaw_passthrough());
motors->set_acro_tail(true);
// set stab collective false to use full collective pitch range
copter.input_manager.set_use_stab_col(false);
// always successfully enter acro
return true;
}
// heli_acro_run - runs the acro controller
// should be called at 100hz or more
void ModeAcro_Heli::run()
{
float target_roll, target_pitch, target_yaw;
float pilot_throttle_scaled;
// Tradheli should not reset roll, pitch, yaw targets when motors are not runup while flying, because
// we may be in autorotation flight. This is so that the servos move in a realistic fashion while disarmed
// for operational checks. Also, unlike multicopters we do not set throttle (i.e. collective pitch) to zero
// so the swash servos move.
if (!motors->armed()) {
// Motors should be Stopped
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
} else {
// heli will not let the spool state progress to THROTTLE_UNLIMITED until motor interlock is enabled
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
switch (motors->get_spool_state()) {
case AP_Motors::SpoolState::SHUT_DOWN:
// Motors Stopped
attitude_control->reset_target_and_rate(false);
attitude_control->reset_rate_controller_I_terms();
break;
case AP_Motors::SpoolState::GROUND_IDLE:
// If aircraft is landed, set target heading to current and reset the integrator
// Otherwise motors could be at ground idle for practice autorotation
if ((motors->init_targets_on_arming() && motors->using_leaky_integrator()) || (copter.ap.land_complete && !motors->using_leaky_integrator())) {
attitude_control->reset_target_and_rate(false);
attitude_control->reset_rate_controller_I_terms_smoothly();
}
break;
case AP_Motors::SpoolState::THROTTLE_UNLIMITED:
if (copter.ap.land_complete && !motors->using_leaky_integrator()) {
attitude_control->reset_rate_controller_I_terms_smoothly();
}
break;
case AP_Motors::SpoolState::SPOOLING_UP:
case AP_Motors::SpoolState::SPOOLING_DOWN:
// do nothing
break;
}
if (!motors->has_flybar()){
// convert the input to the desired body frame rate
get_pilot_desired_angle_rates(channel_roll->norm_input_dz(), channel_pitch->norm_input_dz(), channel_yaw->norm_input_dz(), target_roll, target_pitch, target_yaw);
// only mimic flybar response when trainer mode is disabled
if ((Trainer)g.acro_trainer.get() == Trainer::OFF) {
// while landed always leak off target attitude to current attitude
if (copter.ap.land_complete) {
virtual_flybar(target_roll, target_pitch, target_yaw, 3.0f, 3.0f);
// while flying use acro balance parameters for leak rate
} else {
virtual_flybar(target_roll, target_pitch, target_yaw, g.acro_balance_pitch, g.acro_balance_roll);
}
}
if (motors->supports_yaw_passthrough()) {
// if the tail on a flybar heli has an external gyro then
// also use no deadzone for the yaw control and
// pass-through the input direct to output.
target_yaw = channel_yaw->get_control_in_zero_dz();
}
// run attitude controller
if (g2.acro_options.get() & uint8_t(AcroOptions::RATE_LOOP_ONLY)) {
attitude_control->input_rate_bf_roll_pitch_yaw_2(target_roll, target_pitch, target_yaw);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw);
}
}else{
/*
for fly-bar passthrough use control_in values with no
deadzone. This gives true pass-through.
*/
float roll_in = channel_roll->get_control_in_zero_dz();
float pitch_in = channel_pitch->get_control_in_zero_dz();
float yaw_in;
if (motors->supports_yaw_passthrough()) {
// if the tail on a flybar heli has an external gyro then
// also use no deadzone for the yaw control and
// pass-through the input direct to output.
yaw_in = channel_yaw->get_control_in_zero_dz();
} else {
// if there is no external gyro then run the usual
// ACRO_YAW_P gain on the input control, including
// deadzone
yaw_in = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
}
// run attitude controller
attitude_control->passthrough_bf_roll_pitch_rate_yaw(roll_in, pitch_in, yaw_in);
}
// get pilot's desired throttle
pilot_throttle_scaled = copter.input_manager.get_pilot_desired_collective(channel_throttle->get_control_in());
// output pilot's throttle without angle boost
attitude_control->set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt);
}
// virtual_flybar - acts like a flybar by leaking target atttitude back to current attitude
void ModeAcro_Heli::virtual_flybar( float &roll_out, float &pitch_out, float &yaw_out, float pitch_leak, float roll_leak)
{
Vector3f rate_ef_level, rate_bf_level;
// get attitude targets
const Vector3f att_target = attitude_control->get_att_target_euler_cd();
// Calculate earth frame rate command for roll leak to current attitude
rate_ef_level.x = -wrap_180_cd(att_target.x - ahrs.roll_sensor) * roll_leak;
// Calculate earth frame rate command for pitch leak to current attitude
rate_ef_level.y = -wrap_180_cd(att_target.y - ahrs.pitch_sensor) * pitch_leak;
// Calculate earth frame rate command for yaw
rate_ef_level.z = 0;
// convert earth-frame leak rates to body-frame leak rates
attitude_control->euler_rate_to_ang_vel(attitude_control->get_attitude_target_quat(), rate_ef_level, rate_bf_level);
// combine earth frame rate corrections with rate requests
roll_out += rate_bf_level.x;
pitch_out += rate_bf_level.y;
yaw_out += rate_bf_level.z;
}
#endif //HELI_FRAME
#endif //MODE_ACRO_ENABLED