ardupilot/ArduCopter/navigation.pde
2014-02-15 05:27:41 +11:00

153 lines
4.5 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// run_nav_updates - top level call for the autopilot
// ensures calculations such as "distance to waypoint" are calculated before autopilot makes decisions
// To-Do - rename and move this function to make it's purpose more clear
static void run_nav_updates(void)
{
// fetch position from inertial navigation
calc_position();
// calculate distance and bearing for reporting and autopilot decisions
calc_distance_and_bearing();
// run autopilot to make high level decisions about control modes
run_autopilot();
}
// calc_position - get lat and lon positions from inertial nav library
static void calc_position(){
if( inertial_nav.position_ok() ) {
// pull position from interial nav library
current_loc.lng = inertial_nav.get_longitude();
current_loc.lat = inertial_nav.get_latitude();
}
}
// calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions
static void calc_distance_and_bearing()
{
Vector3f curr = inertial_nav.get_position();
// get target from loiter or wpinav controller
if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) {
wp_distance = wp_nav.get_loiter_distance_to_target();
wp_bearing = wp_nav.get_loiter_bearing_to_target();
}else if( nav_mode == NAV_WP ) {
wp_distance = wp_nav.get_wp_distance_to_destination();
wp_bearing = wp_nav.get_wp_bearing_to_destination();
}else{
wp_distance = 0;
wp_bearing = 0;
}
// calculate home distance and bearing
if(GPS_ok()) {
home_distance = pythagorous2(curr.x, curr.y);
home_bearing = pv_get_bearing_cd(curr,Vector3f(0,0,0));
// update super simple bearing (if required) because it relies on home_bearing
update_super_simple_bearing(false);
}
}
// run_autopilot - highest level call to process mission commands
static void run_autopilot()
{
switch( control_mode ) {
case AUTO:
// load the next command if the command queues are empty
update_commands();
// process the active navigation and conditional commands
verify_commands();
break;
case RTL:
verify_RTL();
break;
}
}
// set_nav_mode - update nav mode and initialise any variables as required
static bool set_nav_mode(uint8_t new_nav_mode)
{
bool nav_initialised = false; // boolean to ensure proper initialisation of nav modes
Vector3f stopping_point; // stopping point for circle mode
// return immediately if no change
if( new_nav_mode == nav_mode ) {
return true;
}
switch( new_nav_mode ) {
case NAV_NONE:
nav_initialised = true;
// initialise global navigation variables including wp_distance
reset_nav_params();
break;
case NAV_LOITER:
// set target to current position
wp_nav.init_loiter_target();
nav_initialised = true;
break;
case NAV_WP:
nav_initialised = true;
break;
}
// if initialisation has been successful update the yaw mode
if( nav_initialised ) {
nav_mode = new_nav_mode;
}
// return success or failure
return nav_initialised;
}
// update_nav_mode - run navigation controller based on nav_mode
// called at 100hz
static void update_nav_mode()
{
// exit immediately if not auto_armed or inertial nav position bad
if (!ap.auto_armed || !inertial_nav.position_ok()) {
return;
}
switch( nav_mode ) {
case NAV_NONE:
// do nothing
break;
case NAV_WP:
// call waypoint controller
wp_nav.update_wpnav();
break;
}
}
// Keeps old data out of our calculation / logs
static void reset_nav_params(void)
{
// Will be set by new command
wp_bearing = 0;
// Will be set by new command
wp_distance = 0;
// Will be set by nav or loiter controllers
lon_error = 0;
lat_error = 0;
}
// get_yaw_slew - reduces rate of change of yaw to a maximum
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec)
{
return wrap_360_cd(current_yaw + constrain_int16(wrap_180_cd(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec));
}