ardupilot/libraries/AP_Math/polygon.cpp
Andrew Tridgell a3a0e5646f polygon: improve the speed and precision of the polygon algorithm
now takes 156 usec per test, with a 11 point boundary
2011-12-18 12:59:50 +11:00

77 lines
2.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* polygon.cpp
* Copyright (C) Andrew Tridgell 2011
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Math.h"
/*
The point in polygon algorithm is based on:
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
*/
/*
Polygon_outside(): test for a point in a polygon
Input: P = a point,
V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
Return: true if P is outside the polygon
This does not take account of the curvature of the earth, but we
expect that to be very small over the distances involved in the
fence boundary
*/
bool Polygon_outside(const Vector2l &P, const Vector2l *V, unsigned n)
{
unsigned i, j;
bool outside = true;
for (i = 0, j = n-1; i < n; j = i++) {
if ((V[i].y > P.y) == (V[j].y > P.y)) {
continue;
}
float dx1, dx2, dy1, dy2;
// use floating point to cope with possible integer overflow
// this still results in precision of better than 1m
dx1 = P.x - V[i].x;
dx2 = V[j].x - V[i].x;
dy1 = P.y - V[i].y;
dy2 = V[j].y - V[i].y;
if (dy2 < 0) {
if ( dx1 * dy2 > dx2 * dy1 ) {
outside = !outside;
}
} else {
if ( dx1 * dy2 < dx2 * dy1 ) {
outside = !outside;
}
}
}
return outside;
}
/*
check if a polygon is complete.
We consider a polygon to be complete if we have at least 4 points,
and the first point is the same as the last point. That is the
minimum requirement for the Polygon_outside function to work
*/
bool Polygon_complete(const Vector2l *V, unsigned n)
{
return (n >= 4 && V[n-1].x == V[0].x && V[n-1].y == V[0].y);
}