ardupilot/ArduCopter/motors_octa_quad.pde

197 lines
6.0 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == OCTA_QUAD_FRAME
static void init_motors_out()
{
#if INSTANT_PWM == 0
ICR5 = 5000; // 400 hz output CH 1, 2, 9
ICR1 = 5000; // 400 hz output CH 3, 4, 10
ICR3 = 5000; // 400 hz output CH 7, 8, 11
#endif
}
static void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = (float)g.rc_1.pwm_out * .707;
pitch_out = (float)g.rc_2.pwm_out * .707;
// Front Left
motor_out[CH_7] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP
motor_out[CH_8] = g.rc_3.radio_out + roll_out + pitch_out; // CW
// Front Right
motor_out[CH_10] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP
motor_out[CH_11] = g.rc_3.radio_out - roll_out + pitch_out; // CW
// Back Left
motor_out[CH_3] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out - pitch_out); // CCW TOP
motor_out[CH_4] = g.rc_3.radio_out + roll_out - pitch_out; // CW
// Back Right
motor_out[CH_1] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out - pitch_out); // CCW TOP
motor_out[CH_2] = g.rc_3.radio_out - roll_out - pitch_out; // CW
}if(g.frame_orientation == PLUS_FRAME){
roll_out = g.rc_1.pwm_out;
pitch_out = g.rc_2.pwm_out;
// Left
motor_out[CH_7] = (g.rc_3.radio_out * g.top_bottom_ratio) - roll_out; // CCW TOP
motor_out[CH_8] = g.rc_3.radio_out - roll_out; // CW
// Right
motor_out[CH_1] = (g.rc_3.radio_out * g.top_bottom_ratio) + roll_out; // CCW TOP
motor_out[CH_2] = g.rc_3.radio_out + roll_out; // CW
// Front
motor_out[CH_10] = (g.rc_3.radio_out * g.top_bottom_ratio) + pitch_out; // CCW TOP
motor_out[CH_11] = g.rc_3.radio_out + pitch_out; // CW
// Back
motor_out[CH_3] = (g.rc_3.radio_out * g.top_bottom_ratio) - pitch_out; // CCW TOP
motor_out[CH_4] = g.rc_3.radio_out - pitch_out; // CW
}
// Yaw
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] += g.rc_4.pwm_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_10] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
motor_out[CH_8] -= g.rc_4.pwm_out; // CW
motor_out[CH_11] -= g.rc_4.pwm_out; // CW
// TODO add stability patch
motor_out[CH_1] = min(motor_out[CH_1], out_max);
motor_out[CH_2] = min(motor_out[CH_2], out_max);
motor_out[CH_3] = min(motor_out[CH_3], out_max);
motor_out[CH_4] = min(motor_out[CH_4], out_max);
motor_out[CH_7] = min(motor_out[CH_7], out_max);
motor_out[CH_8] = min(motor_out[CH_8], out_max);
motor_out[CH_10] = min(motor_out[CH_10], out_max);
motor_out[CH_11] = min(motor_out[CH_11], out_max);
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
motor_out[CH_7] = max(motor_out[CH_7], out_min);
motor_out[CH_8] = max(motor_out[CH_8], out_min);
motor_out[CH_10] = max(motor_out[CH_10], out_min);
motor_out[CH_11] = max(motor_out[CH_11], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[CH_7] = g.rc_3.radio_min;
motor_out[CH_8] = g.rc_3.radio_min;
motor_out[CH_10] = g.rc_3.radio_min;
motor_out[CH_11] = g.rc_3.radio_min;
}
#endif
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
APM_RC.OutputCh(CH_10, motor_out[CH_10]);
APM_RC.OutputCh(CH_11, motor_out[CH_11]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
APM_RC.Force_Out6_Out7();
#endif
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 11; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min);
}
static void output_motor_test()
{
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min);
APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min + 100);
delay(1000);
}
#endif