ardupilot/ArduCopterMega/navigation.pde
jasonshort a42a939cc9 2.0.16, Now that Yaw PID vs PI issue is sorted, this is reverting back to Rate based Yaw.
Made minor change in Loiter to check something.
Motor LEDs enabled. Let me know if they work OK.
Armed Motors is now Solid to match GPS behavior.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2421 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-05-27 18:21:55 +00:00

275 lines
8.1 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
void navigate()
{
// do not navigate with corrupt data
// ---------------------------------
if (g_gps->fix == 0){
g_gps->new_data = false;
return;
}
if(next_WP.lat == 0){
return;
}
// waypoint distance from plane
// ----------------------------
wp_distance = get_distance(&current_loc, &next_WP);
if (wp_distance < 0){
gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
//Serial.println(wp_distance,DEC);
//print_current_waypoints();
return;
}
// target_bearing is where we should be heading
// --------------------------------------------
target_bearing = get_bearing(&current_loc, &next_WP);
// nav_bearing will includes xtrac correction
// ------------------------------------------
nav_bearing = target_bearing;
}
bool check_missed_wp()
{
long temp = target_bearing - saved_target_bearing;
temp = wrap_180(temp);
return (abs(temp) > 10000); //we pased the waypoint by 10 °
}
#define DIST_ERROR_MAX 1800
void calc_loiter_nav()
{
/*
Becuase we are using lat and lon to do our distance errors here's a quick chart:
100 = 1m
1000 = 11m = 36 feet
1800 = 19.80m = 60 feet
3000 = 33m
10000 = 111m
pitch_max = 22° (2200)
*/
// X ROLL
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST
// Y PITCH
lat_error = current_loc.lat - next_WP.lat; // 0 - 500 = -500 pitch NORTH
long_error = constrain(long_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error
lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error
nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav, 1.0); // X 700 * 2.5 = 1750,
nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav, 1.0); // Y invert lat (for pitch)
long pmax = g.pitch_max.get();
nav_lon = constrain(nav_lon, -pmax, pmax);
nav_lat = constrain(nav_lat, -pmax, pmax);
}
void calc_loiter_output()
{
// rotate the vector
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x;
// BAD
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left
//WEST -1000 * 0 - 1000 * -1 = 1000 // roll right - Backwards
//EAST -1000 * 0 - 1000 * 1 = -1000 // roll left - Backwards
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right
// GOOD
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left
//WEST -1000 * 0 - 1000 * 1 = -1000 // roll right
//EAST -1000 * 0 - 1000 * -1 = 1000 // roll left
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right
nav_pitch = ((float)nav_lon * -cos_yaw_x + (float)nav_lat * sin_yaw_y);
// BAD
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back
//WEST -1000 * -1 + 1000 * 0 = 1000 // pitch back - Backwards
//EAST -1000 * 1 + 1000 * 0 = -1000 // pitch forward - Backwards
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward
// GOOD
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back
//WEST -1000 * 1 + 1000 * 0 = -1000 // pitch forward
//EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward
//limit our copter pitch - this will change if we go to a fully rate limited approach.
//limit_nav_pitch_roll(g.pitch_max.get());
}
void calc_simple_nav()
{
// no dampening here in SIMPLE mode
nav_lat = constrain((wp_distance * 100), -1800, 1800); // +- 20m max error
// Scale response by kP
nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36°
}
void calc_nav_output()
{
// get the sin and cos of the bearing error - rotated 90°
sin_nav_y = sin(radians((float)(9000 - bearing_error) / 100));
cos_nav_x = cos(radians((float)(bearing_error - 9000) / 100));
// rotate the vector
nav_roll = (float)nav_lat * cos_nav_x;
nav_pitch = -(float)nav_lat * sin_nav_y;
}
#define WAYPOINT_SPEED 450
#if NAV_TEST == 0
void calc_rate_nav()
{
// calc distance error
nav_lat = min((wp_distance * 100), 1800); // +- 20m max error
// Scale response by kP
nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36°
// Scale response by kP
//long output = g.pid_nav_wp.kP() * error;
int dampening = g.pid_nav_wp.kD() * (g_gps->ground_speed - last_ground_speed);
// remember our old speed
last_ground_speed = g_gps->ground_speed;
// dampen our response
nav_lat -= constrain(dampening, -1800, 1800); // +- 20m max error
}
#else
// called after we get GPS read
void calc_rate_nav()
{
// which direction are we moving?
long target_error = target_bearing - g_gps->ground_course;
target_error = wrap_180(target_error);
// calc the cos of the error to tell how fast we are moving towards the target in cm
int groundspeed = (float)g_gps->ground_speed * cos(radians((float)target_error/100));
// change to rate error
// we want to be going 450cm/s
int error = constrain(WAYPOINT_SPEED - groundspeed, -1000, 1000);
// Scale response by kP
nav_lat = g.pid_nav_wp.get_pid(error, dTnav, 1.0);
Serial.printf("dTnav: %ld, gs: %d, err: %d, int: %d, pitch: %ld", dTnav, groundspeed, error, (int)g.pid_nav_wp.get_integrator(), (long)nav_lat);
// limit our output
nav_lat = constrain(nav_lat, -4000, 4000); // +- max error
}
#endif
void calc_bearing_error()
{
bearing_error = nav_bearing - dcm.yaw_sensor;
bearing_error = wrap_180(bearing_error);
}
void calc_altitude_error()
{
altitude_error = next_WP.alt - current_loc.alt;
}
void calc_altitude_smoothing_error()
{
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius
target_altitude = next_WP.alt - ((wp_distance * (next_WP.alt - prev_WP.alt)) / (wp_totalDistance - g.waypoint_radius));
// stay within a certain range
if(prev_WP.alt > next_WP.alt){
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
}else{
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
}
altitude_error = target_altitude - current_loc.alt;
}
long wrap_360(long error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
long wrap_180(long error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
void update_crosstrack(void)
{
// Crosstrack Error
// ----------------
if (cross_track_test() < 5000) { // If we are too far off or too close we don't do track following
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line
nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
nav_bearing = wrap_360(nav_bearing);
}
}
long cross_track_test()
{
long temp = target_bearing - crosstrack_bearing;
temp = wrap_180(temp);
return abs(temp);
}
void reset_crosstrack()
{
crosstrack_bearing = get_bearing(&current_loc, &next_WP); // Used for track following
}
long get_altitude_above_home(void)
{
// This is the altitude above the home location
// The GPS gives us altitude at Sea Level
// if you slope soar, you should see a negative number sometimes
// -------------------------------------------------------------
return current_loc.alt - home.alt;
}
// distance is returned in meters
long get_distance(struct Location *loc1, struct Location *loc2)
{
//if(loc1->lat == 0 || loc1->lng == 0)
// return -1;
//if(loc2->lat == 0 || loc2->lng == 0)
// return -1;
float dlat = (float)(loc2->lat - loc1->lat);
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
}
long get_alt_distance(struct Location *loc1, struct Location *loc2)
{
return abs(loc1->alt - loc2->alt);
}
long get_bearing(struct Location *loc1, struct Location *loc2)
{
long off_x = loc2->lng - loc1->lng;
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
if (bearing < 0) bearing += 36000;
return bearing;
}