mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 10:08:28 -04:00
596c7a25b7
gps-pointer member
119 lines
5.5 KiB
C++
119 lines
5.5 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#ifndef AC_FENCE_H
|
|
#define AC_FENCE_H
|
|
|
|
#include <inttypes.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Param.h>
|
|
#include <AP_Math.h>
|
|
#include <AP_InertialNav.h> // Inertial Navigation library
|
|
|
|
// bit masks for enabled fence types. Used for TYPE parameter
|
|
#define AC_FENCE_TYPE_NONE 0 // fence disabled
|
|
#define AC_FENCE_TYPE_ALT_MAX 1 // high alt fence which usually initiates an RTL
|
|
#define AC_FENCE_TYPE_CIRCLE 2 // circular horizontal fence (usually initiates an RTL)
|
|
|
|
// valid actions should a fence be breached
|
|
#define AC_FENCE_ACTION_REPORT_ONLY 0 // report to GCS that boundary has been breached but take no further action
|
|
#define AC_FENCE_ACTION_RTL_AND_LAND 1 // return to launch and, if that fails, land
|
|
|
|
// default boundaries
|
|
#define AC_FENCE_ALT_MAX_DEFAULT 100.0f // default max altitude is 100m
|
|
#define AC_FENCE_CIRCLE_RADIUS_DEFAULT 150.0f // default circular fence radius is 150m
|
|
#define AC_FENCE_ALT_MAX_BACKUP_DISTANCE 20.0f // after fence is broken we recreate the fence 20m further up
|
|
#define AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE 20.0f // after fence is broken we recreate the fence 20m further out
|
|
#define AC_FENCE_MARGIN_DEFAULT 2.0f // default distance in meters that autopilot's should maintain from the fence to avoid a breach
|
|
|
|
// give up distance
|
|
#define AC_FENCE_GIVE_UP_DISTANCE 100.0f // distance outside the fence at which we should give up and just land. Note: this is not used by library directly but is intended to be used by the main code
|
|
|
|
class AC_Fence
|
|
{
|
|
public:
|
|
|
|
/// Constructor
|
|
AC_Fence(const AP_InertialNav* inav);
|
|
|
|
/// enable - allows fence to be enabled/disabled. Note: this does not update the eeprom saved value
|
|
void enable(bool true_false) { _enabled = true_false; }
|
|
|
|
/// enabled - returns true if fence is enabled
|
|
bool enabled() const { return _enabled; }
|
|
|
|
/// get_enabled_fences - returns bitmask of enabled fences
|
|
uint8_t get_enabled_fences() const;
|
|
|
|
/// pre_arm_check - returns true if all pre-takeoff checks have completed successfully
|
|
bool pre_arm_check() const;
|
|
|
|
///
|
|
/// methods to check we are within the boundaries and recover
|
|
///
|
|
|
|
/// check_fence - returns the fence type that has been breached (if any)
|
|
uint8_t check_fence();
|
|
|
|
/// get_breaches - returns bit mask of the fence types that have been breached
|
|
uint8_t get_breaches() const { return _breached_fences; }
|
|
|
|
/// get_breach_time - returns time the fence was breached
|
|
uint32_t get_breach_time() const { return _breach_time; }
|
|
|
|
/// get_breach_count - returns number of times we have breached the fence
|
|
uint16_t get_breach_count() const { return _breach_count; }
|
|
|
|
/// get_breach_distance - returns distance in meters outside of the given fence
|
|
float get_breach_distance(uint8_t fence_type) const;
|
|
|
|
/// get_action - getter for user requested action on limit breach
|
|
uint8_t get_action() const { return _action.get(); }
|
|
|
|
/// get_safe_alt - returns maximum safe altitude (i.e. alt_max - margin)
|
|
float get_safe_alt() const { return _alt_max - _margin; }
|
|
|
|
///
|
|
/// time saving methods to piggy-back on main code's calculations
|
|
///
|
|
|
|
/// set_home_distance - update vehicle's distance from home in meters - required for circular horizontal fence monitoring
|
|
void set_home_distance(float distance) { _home_distance = distance; }
|
|
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
private:
|
|
|
|
/// record_breach - update breach bitmask, time and count
|
|
void record_breach(uint8_t fence_type);
|
|
|
|
/// clear_breach - update breach bitmask, time and count
|
|
void clear_breach(uint8_t fence_type);
|
|
|
|
// pointers to other objects we depend upon
|
|
const AP_InertialNav *const _inav;
|
|
|
|
// parameters
|
|
AP_Int8 _enabled; // top level enable/disable control
|
|
AP_Int8 _enabled_fences; // bit mask holding which fences are enabled
|
|
AP_Int8 _action; // recovery action specified by user
|
|
AP_Float _alt_max; // altitude upper limit in meters
|
|
AP_Float _circle_radius; // circle fence radius in meters
|
|
AP_Float _margin; // distance in meters that autopilot's should maintain from the fence to avoid a breach
|
|
|
|
// backup fences
|
|
float _alt_max_backup; // backup altitude upper limit in meters used to refire the breach if the vehicle continues to move further away
|
|
float _circle_radius_backup; // backup circle fence radius in meters used to refire the breach if the vehicle continues to move further away
|
|
|
|
// breach distances
|
|
float _alt_max_breach_distance; // distance above the altitude max
|
|
float _circle_breach_distance; // distance beyond the circular fence
|
|
|
|
// other internal variables
|
|
float _home_distance; // distance from home in meters (provided by main code)
|
|
|
|
// breach information
|
|
uint8_t _breached_fences; // bitmask holding the fence type that was breached (i.e. AC_FENCE_TYPE_ALT_MIN, AC_FENCE_TYPE_CIRCLE)
|
|
uint32_t _breach_time; // time of last breach in milliseconds
|
|
uint16_t _breach_count; // number of times we have breached the fence
|
|
};
|
|
#endif // AC_FENCE_H
|