mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 14:38:30 -04:00
449 lines
12 KiB
C++
449 lines
12 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
|
|
#include "AP_HAL_PX4.h"
|
|
#include "Scheduler.h"
|
|
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <sched.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <drivers/drv_hrt.h>
|
|
#include <nuttx/arch.h>
|
|
#include <systemlib/systemlib.h>
|
|
#include <pthread.h>
|
|
#include <poll.h>
|
|
|
|
#include "UARTDriver.h"
|
|
#include "AnalogIn.h"
|
|
#include "Storage.h"
|
|
#include "RCOutput.h"
|
|
#include "RCInput.h"
|
|
|
|
#include <AP_Scheduler/AP_Scheduler.h>
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
|
|
using namespace PX4;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
extern bool _px4_thread_should_exit;
|
|
|
|
PX4Scheduler::PX4Scheduler() :
|
|
_perf_timers(perf_alloc(PC_ELAPSED, "APM_timers")),
|
|
_perf_io_timers(perf_alloc(PC_ELAPSED, "APM_IO_timers")),
|
|
_perf_storage_timer(perf_alloc(PC_ELAPSED, "APM_storage_timers")),
|
|
_perf_delay(perf_alloc(PC_ELAPSED, "APM_delay"))
|
|
{}
|
|
|
|
void PX4Scheduler::init()
|
|
{
|
|
_main_task_pid = getpid();
|
|
|
|
// setup the timer thread - this will call tasks at 1kHz
|
|
pthread_attr_t thread_attr;
|
|
struct sched_param param;
|
|
|
|
pthread_attr_init(&thread_attr);
|
|
pthread_attr_setstacksize(&thread_attr, 2048);
|
|
|
|
param.sched_priority = APM_TIMER_PRIORITY;
|
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m);
|
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
|
|
|
|
pthread_create(&_timer_thread_ctx, &thread_attr, &PX4Scheduler::_timer_thread, this);
|
|
|
|
// the UART thread runs at a medium priority
|
|
pthread_attr_init(&thread_attr);
|
|
pthread_attr_setstacksize(&thread_attr, 2048);
|
|
|
|
param.sched_priority = APM_UART_PRIORITY;
|
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m);
|
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
|
|
|
|
pthread_create(&_uart_thread_ctx, &thread_attr, &PX4Scheduler::_uart_thread, this);
|
|
|
|
// the IO thread runs at lower priority
|
|
pthread_attr_init(&thread_attr);
|
|
pthread_attr_setstacksize(&thread_attr, 2048);
|
|
|
|
param.sched_priority = APM_IO_PRIORITY;
|
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m);
|
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
|
|
|
|
pthread_create(&_io_thread_ctx, &thread_attr, &PX4Scheduler::_io_thread, this);
|
|
|
|
// the storage thread runs at just above IO priority
|
|
pthread_attr_init(&thread_attr);
|
|
pthread_attr_setstacksize(&thread_attr, 1024);
|
|
|
|
param.sched_priority = APM_STORAGE_PRIORITY;
|
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m);
|
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
|
|
|
|
pthread_create(&_storage_thread_ctx, &thread_attr, &PX4Scheduler::_storage_thread, this);
|
|
}
|
|
|
|
/**
|
|
delay for a specified number of microseconds using a semaphore wait
|
|
*/
|
|
void PX4Scheduler::delay_microseconds_semaphore(uint16_t usec)
|
|
{
|
|
sem_t wait_semaphore;
|
|
struct hrt_call wait_call;
|
|
sem_init(&wait_semaphore, 0, 0);
|
|
memset(&wait_call, 0, sizeof(wait_call));
|
|
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post, &wait_semaphore);
|
|
sem_wait(&wait_semaphore);
|
|
}
|
|
|
|
void PX4Scheduler::delay_microseconds(uint16_t usec)
|
|
{
|
|
perf_begin(_perf_delay);
|
|
delay_microseconds_semaphore(usec);
|
|
perf_end(_perf_delay);
|
|
}
|
|
|
|
/*
|
|
wrapper around sem_post that boosts main thread priority
|
|
*/
|
|
static void sem_post_boost(sem_t *sem)
|
|
{
|
|
hal_px4_set_priority(APM_MAIN_PRIORITY_BOOST);
|
|
sem_post(sem);
|
|
}
|
|
|
|
/*
|
|
return the main thread to normal priority
|
|
*/
|
|
static void set_normal_priority(void *sem)
|
|
{
|
|
hal_px4_set_priority(APM_MAIN_PRIORITY);
|
|
}
|
|
|
|
/*
|
|
a variant of delay_microseconds that boosts priority to
|
|
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC
|
|
microseconds when the time completes. This significantly improves
|
|
the regularity of timing of the main loop as it takes
|
|
*/
|
|
void PX4Scheduler::delay_microseconds_boost(uint16_t usec)
|
|
{
|
|
sem_t wait_semaphore;
|
|
static struct hrt_call wait_call;
|
|
sem_init(&wait_semaphore, 0, 0);
|
|
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post_boost, &wait_semaphore);
|
|
sem_wait(&wait_semaphore);
|
|
hrt_call_after(&wait_call, APM_MAIN_PRIORITY_BOOST_USEC, (hrt_callout)set_normal_priority, nullptr);
|
|
}
|
|
|
|
void PX4Scheduler::delay(uint16_t ms)
|
|
{
|
|
perf_begin(_perf_delay);
|
|
uint64_t start = AP_HAL::micros64();
|
|
|
|
while ((AP_HAL::micros64() - start)/1000 < ms &&
|
|
!_px4_thread_should_exit) {
|
|
delay_microseconds_semaphore(1000);
|
|
if (in_main_thread() && _min_delay_cb_ms <= ms) {
|
|
call_delay_cb();
|
|
}
|
|
}
|
|
perf_end(_perf_delay);
|
|
if (_px4_thread_should_exit) {
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void PX4Scheduler::register_timer_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
_num_timer_procs++;
|
|
} else {
|
|
hal.console->printf("Out of timer processes\n");
|
|
}
|
|
}
|
|
|
|
void PX4Scheduler::register_io_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_io_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_io_proc[_num_io_procs] = proc;
|
|
_num_io_procs++;
|
|
} else {
|
|
hal.console->printf("Out of IO processes\n");
|
|
}
|
|
}
|
|
|
|
void PX4Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
|
|
{
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void PX4Scheduler::reboot(bool hold_in_bootloader)
|
|
{
|
|
// disarm motors to ensure they are off during a bootloader upload
|
|
hal.rcout->force_safety_on();
|
|
hal.rcout->force_safety_no_wait();
|
|
|
|
// delay to ensure the async force_saftey operation completes
|
|
delay(500);
|
|
|
|
px4_systemreset(hold_in_bootloader);
|
|
}
|
|
|
|
void PX4Scheduler::_run_timers()
|
|
{
|
|
if (_in_timer_proc) {
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i]) {
|
|
_timer_proc[i]();
|
|
}
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != nullptr) {
|
|
_failsafe();
|
|
}
|
|
|
|
// process analog input
|
|
((PX4AnalogIn *)hal.analogin)->_timer_tick();
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
extern bool px4_ran_overtime;
|
|
|
|
void *PX4Scheduler::_timer_thread(void *arg)
|
|
{
|
|
PX4Scheduler *sched = (PX4Scheduler *)arg;
|
|
uint32_t last_ran_overtime = 0;
|
|
|
|
pthread_setname_np(pthread_self(), "apm_timer");
|
|
|
|
while (!sched->_hal_initialized) {
|
|
poll(nullptr, 0, 1);
|
|
}
|
|
while (!_px4_thread_should_exit) {
|
|
sched->delay_microseconds_semaphore(1000);
|
|
|
|
// run registered timers
|
|
perf_begin(sched->_perf_timers);
|
|
sched->_run_timers();
|
|
perf_end(sched->_perf_timers);
|
|
|
|
// process any pending RC output requests
|
|
hal.rcout->timer_tick();
|
|
|
|
// process any pending RC input requests
|
|
((PX4RCInput *)hal.rcin)->_timer_tick();
|
|
|
|
if (px4_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) {
|
|
last_ran_overtime = AP_HAL::millis();
|
|
#if 0
|
|
printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
|
|
hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
|
|
#endif
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void PX4Scheduler::_run_io(void)
|
|
{
|
|
if (_in_io_proc) {
|
|
return;
|
|
}
|
|
_in_io_proc = true;
|
|
|
|
// now call the IO based drivers
|
|
for (int i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i]) {
|
|
_io_proc[i]();
|
|
}
|
|
}
|
|
|
|
_in_io_proc = false;
|
|
}
|
|
|
|
void *PX4Scheduler::_uart_thread(void *arg)
|
|
{
|
|
PX4Scheduler *sched = (PX4Scheduler *)arg;
|
|
|
|
pthread_setname_np(pthread_self(), "apm_uart");
|
|
|
|
while (!sched->_hal_initialized) {
|
|
poll(nullptr, 0, 1);
|
|
}
|
|
while (!_px4_thread_should_exit) {
|
|
sched->delay_microseconds_semaphore(1000);
|
|
|
|
// process any pending serial bytes
|
|
hal.uartA->_timer_tick();
|
|
hal.uartB->_timer_tick();
|
|
hal.uartC->_timer_tick();
|
|
hal.uartD->_timer_tick();
|
|
hal.uartE->_timer_tick();
|
|
hal.uartF->_timer_tick();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void *PX4Scheduler::_io_thread(void *arg)
|
|
{
|
|
PX4Scheduler *sched = (PX4Scheduler *)arg;
|
|
|
|
pthread_setname_np(pthread_self(), "apm_io");
|
|
|
|
while (!sched->_hal_initialized) {
|
|
poll(nullptr, 0, 1);
|
|
}
|
|
while (!_px4_thread_should_exit) {
|
|
sched->delay_microseconds_semaphore(1000);
|
|
|
|
// run registered IO processes
|
|
perf_begin(sched->_perf_io_timers);
|
|
sched->_run_io();
|
|
perf_end(sched->_perf_io_timers);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void *PX4Scheduler::_storage_thread(void *arg)
|
|
{
|
|
PX4Scheduler *sched = (PX4Scheduler *)arg;
|
|
|
|
pthread_setname_np(pthread_self(), "apm_storage");
|
|
|
|
while (!sched->_hal_initialized) {
|
|
poll(nullptr, 0, 1);
|
|
}
|
|
while (!_px4_thread_should_exit) {
|
|
sched->delay_microseconds_semaphore(10000);
|
|
|
|
// process any pending storage writes
|
|
perf_begin(sched->_perf_storage_timer);
|
|
hal.storage->_timer_tick();
|
|
perf_end(sched->_perf_storage_timer);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool PX4Scheduler::in_main_thread() const
|
|
{
|
|
return getpid() == _main_task_pid;
|
|
}
|
|
|
|
void PX4Scheduler::system_initialized()
|
|
{
|
|
if (_initialized) {
|
|
AP_HAL::panic("PANIC: scheduler::system_initialized called"
|
|
"more than once");
|
|
}
|
|
_initialized = true;
|
|
}
|
|
|
|
|
|
/*
|
|
disable interrupts and return a context that can be used to
|
|
restore the interrupt state. This can be used to protect
|
|
critical regions
|
|
*/
|
|
void *PX4Scheduler::disable_interrupts_save(void)
|
|
{
|
|
return (void *)(uintptr_t)irqsave();
|
|
}
|
|
|
|
/*
|
|
restore interrupt state from disable_interrupts_save()
|
|
*/
|
|
void PX4Scheduler::restore_interrupts(void *state)
|
|
{
|
|
irqrestore((irqstate_t)(uintptr_t)state);
|
|
}
|
|
|
|
/*
|
|
trampoline for thread create
|
|
*/
|
|
void *PX4Scheduler::thread_create_trampoline(void *ctx)
|
|
{
|
|
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
|
|
(*t)();
|
|
free(t);
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
create a new thread
|
|
*/
|
|
bool PX4Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
|
|
{
|
|
// take a copy of the MemberProc, it is freed after thread exits
|
|
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc));
|
|
if (!tproc) {
|
|
return false;
|
|
}
|
|
*tproc = proc;
|
|
|
|
uint8_t thread_priority = APM_IO_PRIORITY;
|
|
static const struct {
|
|
priority_base base;
|
|
uint8_t p;
|
|
} priority_map[] = {
|
|
{ PRIORITY_BOOST, APM_MAIN_PRIORITY_BOOST},
|
|
{ PRIORITY_MAIN, APM_MAIN_PRIORITY},
|
|
{ PRIORITY_SPI, APM_SPI_PRIORITY},
|
|
{ PRIORITY_I2C, APM_I2C_PRIORITY},
|
|
{ PRIORITY_CAN, APM_CAN_PRIORITY},
|
|
{ PRIORITY_TIMER, APM_TIMER_PRIORITY},
|
|
{ PRIORITY_RCIN, APM_TIMER_PRIORITY},
|
|
{ PRIORITY_IO, APM_IO_PRIORITY},
|
|
{ PRIORITY_UART, APM_UART_PRIORITY},
|
|
{ PRIORITY_STORAGE, APM_STORAGE_PRIORITY},
|
|
{ PRIORITY_SCRIPTING, APM_SCRIPTING_PRIORITY},
|
|
};
|
|
for (uint8_t i=0; i<ARRAY_SIZE(priority_map); i++) {
|
|
if (priority_map[i].base == base) {
|
|
thread_priority = constrain_int16(priority_map[i].p + priority, 1, APM_MAX_PRIORITY);
|
|
break;
|
|
}
|
|
}
|
|
pthread_t thread;
|
|
pthread_attr_t thread_attr;
|
|
struct sched_param param;
|
|
|
|
pthread_attr_init(&thread_attr);
|
|
pthread_attr_setstacksize(&thread_attr, stack_size);
|
|
|
|
param.sched_priority = thread_priority;
|
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m);
|
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
|
|
|
|
if (pthread_create(&thread, &thread_attr, thread_create_trampoline, tproc) != 0) {
|
|
free(tproc);
|
|
return false;
|
|
}
|
|
pthread_setname_np(thread, name);
|
|
return true;
|
|
}
|
|
|
|
#endif
|