mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 18:08:30 -04:00
304c9b6e72
If a user was driving in reverse and when into an auto mission the rover would try to do the whole mission in reverse. This fixes that.
584 lines
14 KiB
C++
584 lines
14 KiB
C++
/*****************************************************************************
|
|
The init_ardupilot function processes everything we need for an in - air restart
|
|
We will determine later if we are actually on the ground and process a
|
|
ground start in that case.
|
|
|
|
*****************************************************************************/
|
|
|
|
#include "Rover.h"
|
|
#include "version.h"
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// This is the help function
|
|
int8_t Rover::main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf("Commands:\n"
|
|
" logs log readback/setup mode\n"
|
|
" setup setup mode\n"
|
|
" test test mode\n"
|
|
"\n"
|
|
"Move the slide switch and reset to FLY.\n"
|
|
"\n");
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
|
|
static const struct Menu::command main_menu_commands[] = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", MENU_FUNC(process_logs)},
|
|
{"setup", MENU_FUNC(setup_mode)},
|
|
{"test", MENU_FUNC(test_mode)},
|
|
{"reboot", MENU_FUNC(reboot_board)},
|
|
{"help", MENU_FUNC(main_menu_help)}
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
int8_t Rover::reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
hal.scheduler->reboot(false);
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
void Rover::run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
// disable the failsafe code in the CLI
|
|
hal.scheduler->register_timer_failsafe(nullptr, 1);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(nullptr, 5);
|
|
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void mavlink_delay_cb_static()
|
|
{
|
|
rover.mavlink_delay_cb();
|
|
}
|
|
|
|
static void failsafe_check_static()
|
|
{
|
|
rover.failsafe_check();
|
|
}
|
|
|
|
void Rover::init_ardupilot()
|
|
{
|
|
// initialise console serial port
|
|
serial_manager.init_console();
|
|
|
|
cliSerial->printf("\n\nInit " FIRMWARE_STRING
|
|
"\n\nFree RAM: %u\n",
|
|
hal.util->available_memory());
|
|
|
|
//
|
|
// Check the EEPROM format version before loading any parameters from EEPROM.
|
|
//
|
|
|
|
load_parameters();
|
|
|
|
// initialise stats module
|
|
g2.stats.init();
|
|
|
|
gcs().set_dataflash(&DataFlash);
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
// initialise serial ports
|
|
serial_manager.init();
|
|
|
|
// setup first port early to allow BoardConfig to report errors
|
|
gcs_chan[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
|
|
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
|
|
|
|
BoardConfig.init();
|
|
|
|
// initialise notify system
|
|
notify.init(false);
|
|
AP_Notify::flags.failsafe_battery = false;
|
|
notify_mode(control_mode);
|
|
|
|
ServoRelayEvents.set_channel_mask(0xFFF0);
|
|
|
|
set_control_channels();
|
|
|
|
battery.init();
|
|
|
|
// keep a record of how many resets have happened. This can be
|
|
// used to detect in-flight resets
|
|
g.num_resets.set_and_save(g.num_resets+1);
|
|
|
|
// init baro before we start the GCS, so that the CLI baro test works
|
|
barometer.init();
|
|
|
|
// we start by assuming USB connected, as we initialed the serial
|
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
|
|
usb_connected = true;
|
|
check_usb_mux();
|
|
|
|
// setup telem slots with serial ports
|
|
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
|
|
gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
|
|
}
|
|
|
|
// setup frsky telemetry
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
frsky_telemetry.init(serial_manager, FIRMWARE_STRING, MAV_TYPE_GROUND_ROVER);
|
|
#endif
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
log_init();
|
|
#endif
|
|
|
|
if (g.compass_enabled == true) {
|
|
if (!compass.init()|| !compass.read()) {
|
|
cliSerial->printf("Compass initialisation failed!\n");
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
// compass.get_offsets(); // load offsets to account for airframe magnetic interference
|
|
}
|
|
}
|
|
|
|
// initialise sonar
|
|
init_sonar();
|
|
|
|
// and baro for EKF
|
|
init_barometer(true);
|
|
|
|
// Do GPS init
|
|
gps.init(&DataFlash, serial_manager);
|
|
|
|
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up the timer libs
|
|
|
|
relay.init();
|
|
|
|
#if MOUNT == ENABLED
|
|
// initialise camera mount
|
|
camera_mount.init(&DataFlash, serial_manager);
|
|
#endif
|
|
|
|
/*
|
|
setup the 'main loop is dead' check. Note that this relies on
|
|
the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
|
|
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
// If the switch is in 'menu' mode, run the main menu.
|
|
//
|
|
// Since we can't be sure that the setup or test mode won't leave
|
|
// the system in an odd state, we don't let the user exit the top
|
|
// menu; they must reset in order to fly.
|
|
//
|
|
if (g.cli_enabled == 1) {
|
|
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
|
|
cliSerial->printf("%s\n", msg);
|
|
if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != nullptr)) {
|
|
gcs_chan[1].get_uart()->printf("%s\n", msg);
|
|
}
|
|
if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != nullptr)) {
|
|
gcs_chan[2].get_uart()->printf("%s\n", msg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
init_capabilities();
|
|
|
|
startup_ground();
|
|
|
|
set_mode((enum mode)g.initial_mode.get());
|
|
|
|
// set the correct flight mode
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
}
|
|
|
|
//*********************************************************************************
|
|
// This function does all the calibrations, etc. that we need during a ground start
|
|
//*********************************************************************************
|
|
void Rover::startup_ground(void)
|
|
{
|
|
set_mode(INITIALISING);
|
|
|
|
gcs_send_text(MAV_SEVERITY_INFO, "<startup_ground> Ground start");
|
|
|
|
#if(GROUND_START_DELAY > 0)
|
|
gcs_send_text(MAV_SEVERITY_NOTICE, "<startup_ground> With delay");
|
|
delay(GROUND_START_DELAY * 1000);
|
|
#endif
|
|
|
|
// IMU ground start
|
|
//------------------------
|
|
//
|
|
|
|
startup_INS_ground();
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
// initialise mission library
|
|
mission.init();
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
// so set serial ports non-blocking once we are ready to drive
|
|
serial_manager.set_blocking_writes_all(false);
|
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
|
|
ins.set_dataflash(&DataFlash);
|
|
|
|
gcs_send_text(MAV_SEVERITY_INFO, "Ready to drive");
|
|
}
|
|
|
|
/*
|
|
set the in_reverse flag
|
|
reset the throttle integrator if this changes in_reverse
|
|
*/
|
|
void Rover::set_reverse(bool reverse)
|
|
{
|
|
if (in_reverse == reverse) {
|
|
return;
|
|
}
|
|
g.pidSpeedThrottle.reset_I();
|
|
steerController.reset_I();
|
|
nav_controller->set_reverse(reverse);
|
|
steerController.set_reverse(reverse);
|
|
in_reverse = reverse;
|
|
}
|
|
|
|
void Rover::set_mode(enum mode mode)
|
|
{
|
|
if (control_mode == mode){
|
|
// don't switch modes if we are already in the correct mode.
|
|
return;
|
|
}
|
|
|
|
// If we are changing out of AUTO mode reset the loiter timer and stop current mission
|
|
if (control_mode == AUTO) {
|
|
loiter_start_time = 0;
|
|
if (mission.state() == AP_Mission::MISSION_RUNNING) {
|
|
mission.stop();
|
|
}
|
|
}
|
|
|
|
control_mode = mode;
|
|
throttle_last = 0;
|
|
throttle = 500;
|
|
if (!in_auto_reverse) {
|
|
set_reverse(false);
|
|
}
|
|
g.pidSpeedThrottle.reset_I();
|
|
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
frsky_telemetry.update_control_mode(control_mode);
|
|
#endif
|
|
|
|
if (control_mode != AUTO) {
|
|
auto_triggered = false;
|
|
}
|
|
|
|
switch (control_mode) {
|
|
case MANUAL:
|
|
case HOLD:
|
|
case LEARNING:
|
|
case STEERING:
|
|
auto_throttle_mode = false;
|
|
break;
|
|
|
|
case AUTO:
|
|
auto_throttle_mode = true;
|
|
rtl_complete = false;
|
|
restart_nav();
|
|
break;
|
|
|
|
case RTL:
|
|
auto_throttle_mode = true;
|
|
do_RTL();
|
|
break;
|
|
|
|
case GUIDED:
|
|
auto_throttle_mode = true;
|
|
rtl_complete = false;
|
|
/*
|
|
when entering guided mode we set the target as the current
|
|
location. This matches the behaviour of the copter code.
|
|
*/
|
|
guided_WP = current_loc;
|
|
set_guided_WP();
|
|
break;
|
|
|
|
default:
|
|
auto_throttle_mode = true;
|
|
do_RTL();
|
|
break;
|
|
}
|
|
|
|
if (should_log(MASK_LOG_MODE)) {
|
|
DataFlash.Log_Write_Mode(control_mode);
|
|
}
|
|
|
|
notify_mode(control_mode);
|
|
}
|
|
|
|
/*
|
|
set_mode() wrapper for MAVLink SET_MODE
|
|
*/
|
|
bool Rover::mavlink_set_mode(uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
case HOLD:
|
|
case LEARNING:
|
|
case STEERING:
|
|
case GUIDED:
|
|
case AUTO:
|
|
case RTL:
|
|
set_mode((enum mode)mode);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
called to set/unset a failsafe event.
|
|
*/
|
|
void Rover::failsafe_trigger(uint8_t failsafe_type, bool on)
|
|
{
|
|
uint8_t old_bits = failsafe.bits;
|
|
if (on) {
|
|
failsafe.bits |= failsafe_type;
|
|
} else {
|
|
failsafe.bits &= ~failsafe_type;
|
|
}
|
|
if (old_bits == 0 && failsafe.bits != 0) {
|
|
// a failsafe event has started
|
|
failsafe.start_time = millis();
|
|
}
|
|
if (failsafe.triggered != 0 && failsafe.bits == 0) {
|
|
// a failsafe event has ended
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Failsafe ended");
|
|
}
|
|
|
|
failsafe.triggered &= failsafe.bits;
|
|
|
|
if (failsafe.triggered == 0 &&
|
|
failsafe.bits != 0 &&
|
|
millis() - failsafe.start_time > g.fs_timeout*1000 &&
|
|
control_mode != RTL &&
|
|
control_mode != HOLD) {
|
|
failsafe.triggered = failsafe.bits;
|
|
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Failsafe trigger 0x%x", (unsigned)failsafe.triggered);
|
|
switch (g.fs_action) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
set_mode(RTL);
|
|
break;
|
|
case 2:
|
|
set_mode(HOLD);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Rover::startup_INS_ground(void)
|
|
{
|
|
gcs_send_text(MAV_SEVERITY_INFO, "Warming up ADC");
|
|
mavlink_delay(500);
|
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
|
|
// -----------------------
|
|
gcs_send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle");
|
|
mavlink_delay(1000);
|
|
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND);
|
|
|
|
ins.init(scheduler.get_loop_rate_hz());
|
|
ahrs.reset();
|
|
}
|
|
|
|
// updates the notify state
|
|
// should be called at 50hz
|
|
void Rover::update_notify()
|
|
{
|
|
notify.update();
|
|
}
|
|
|
|
void Rover::resetPerfData(void) {
|
|
mainLoop_count = 0;
|
|
G_Dt_max = 0;
|
|
perf_mon_timer = millis();
|
|
}
|
|
|
|
|
|
void Rover::check_usb_mux(void)
|
|
{
|
|
bool usb_check = hal.gpio->usb_connected();
|
|
if (usb_check == usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
usb_connected = usb_check;
|
|
}
|
|
|
|
|
|
void Rover::print_mode(AP_HAL::BetterStream *port, uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
port->printf("Manual");
|
|
break;
|
|
case HOLD:
|
|
port->printf("HOLD");
|
|
break;
|
|
case LEARNING:
|
|
port->printf("Learning");
|
|
break;
|
|
case STEERING:
|
|
port->printf("Steering");
|
|
break;
|
|
case AUTO:
|
|
port->printf("AUTO");
|
|
break;
|
|
case RTL:
|
|
port->printf("RTL");
|
|
break;
|
|
default:
|
|
port->printf("Mode(%u)", (unsigned)mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update notify with mode change
|
|
void Rover::notify_mode(enum mode new_mode)
|
|
{
|
|
notify.flags.flight_mode = new_mode;
|
|
|
|
switch (new_mode) {
|
|
case MANUAL:
|
|
notify.set_flight_mode_str("MANU");
|
|
break;
|
|
case LEARNING:
|
|
notify.set_flight_mode_str("LERN");
|
|
break;
|
|
case STEERING:
|
|
notify.set_flight_mode_str("STER");
|
|
break;
|
|
case HOLD:
|
|
notify.set_flight_mode_str("HOLD");
|
|
break;
|
|
case AUTO:
|
|
notify.set_flight_mode_str("AUTO");
|
|
break;
|
|
case RTL:
|
|
notify.set_flight_mode_str("RTL");
|
|
break;
|
|
case GUIDED:
|
|
notify.set_flight_mode_str("GUID");
|
|
break;
|
|
case INITIALISING:
|
|
notify.set_flight_mode_str("INIT");
|
|
break;
|
|
default:
|
|
notify.set_flight_mode_str("----");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
check a digitial pin for high,low (1/0)
|
|
*/
|
|
uint8_t Rover::check_digital_pin(uint8_t pin)
|
|
{
|
|
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin);
|
|
if (dpin == -1) {
|
|
return 0;
|
|
}
|
|
// ensure we are in input mode
|
|
hal.gpio->pinMode(dpin, HAL_GPIO_INPUT);
|
|
|
|
// enable pullup
|
|
hal.gpio->write(dpin, 1);
|
|
|
|
return hal.gpio->read(dpin);
|
|
}
|
|
|
|
/*
|
|
should we log a message type now?
|
|
*/
|
|
bool Rover::should_log(uint32_t mask)
|
|
{
|
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
|
|
return false;
|
|
}
|
|
bool ret = hal.util->get_soft_armed() || DataFlash.log_while_disarmed();
|
|
if (ret && !DataFlash.logging_started() && !in_log_download) {
|
|
start_logging();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
update AHRS soft arm state and log as needed
|
|
*/
|
|
void Rover::change_arm_state(void)
|
|
{
|
|
Log_Arm_Disarm();
|
|
update_soft_armed();
|
|
}
|
|
|
|
/*
|
|
arm motors
|
|
*/
|
|
bool Rover::arm_motors(AP_Arming::ArmingMethod method)
|
|
{
|
|
if (!arming.arm(method)) {
|
|
return false;
|
|
}
|
|
|
|
change_arm_state();
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
disarm motors
|
|
*/
|
|
bool Rover::disarm_motors(void)
|
|
{
|
|
if (!arming.disarm()) {
|
|
return false;
|
|
}
|
|
if (control_mode != AUTO) {
|
|
// reset the mission on disarm if we are not in auto
|
|
mission.reset();
|
|
}
|
|
|
|
// only log if disarming was successful
|
|
change_arm_state();
|
|
|
|
return true;
|
|
}
|