ardupilot/libraries/AP_MSP/AP_MSP_Telem_Backend.cpp
Andrew Tridgell 106162b0c5 AP_MSP: removed date/time from MSP
we don't want to use real dates here as that would mean we don't get
consistent builds. Being able to reproduce the exact build at a later
date is a valuable property of the code

The git hash should be enough
2021-02-13 19:24:48 +11:00

1061 lines
35 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_BLHeli/AP_BLHeli.h>
#include <RC_Channel/RC_Channel.h>
#include <AP_Common/AP_FWVersion.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_RCMapper/AP_RCMapper.h>
#include <AP_RSSI/AP_RSSI.h>
#include <AP_RTC/AP_RTC.h>
#include <GCS_MAVLink/GCS.h>
#include "AP_MSP.h"
#include "AP_MSP_Telem_Backend.h"
#include <ctype.h>
#include <stdio.h>
#if HAL_MSP_ENABLED
extern const AP_HAL::HAL& hal;
constexpr uint8_t AP_MSP_Telem_Backend::arrows[8];
using namespace MSP;
AP_MSP_Telem_Backend::AP_MSP_Telem_Backend(AP_HAL::UARTDriver *uart) : AP_RCTelemetry(MSP_TIME_SLOT_MAX)
{
_msp_port.uart = uart;
}
/*
Scheduler helper
*/
void AP_MSP_Telem_Backend::setup_wfq_scheduler(void)
{
// initialize packet weights for the WFQ scheduler
// priority[i] = 1/_scheduler.packet_weight[i]
// rate[i] = LinkRate * ( priority[i] / (sum(priority[1-n])) )
set_scheduler_entry(EMPTY_SLOT, 50, 50); // nothing to send
set_scheduler_entry(NAME, 200, 200); // 5Hz 12 chars string used for general purpose text messages
set_scheduler_entry(STATUS, 500, 500); // 2Hz flightmode
set_scheduler_entry(CONFIG, 200, 200); // 5Hz OSD item positions
set_scheduler_entry(RAW_GPS, 250, 250); // 4Hz GPS lat/lon
set_scheduler_entry(COMP_GPS, 250, 250); // 4Hz home direction and distance
set_scheduler_entry(ATTITUDE, 200, 200); // 5Hz attitude
set_scheduler_entry(ALTITUDE, 250, 250); // 4Hz altitude(cm) and velocity(cm/s)
set_scheduler_entry(ANALOG, 250, 250); // 4Hz rssi + batt
set_scheduler_entry(BATTERY_STATE, 500, 500); // 2Hz battery
#ifdef HAVE_AP_BLHELI_SUPPORT
set_scheduler_entry(ESC_SENSOR_DATA, 500, 500); // 2Hz ESC telemetry
#endif
set_scheduler_entry(RTC_DATETIME, 1000, 1000); // 1Hz RTC
}
/*
* init - perform required initialisation
*/
bool AP_MSP_Telem_Backend::init()
{
enable_warnings();
return AP_RCTelemetry::init();
}
bool AP_MSP_Telem_Backend::init_uart()
{
if (_msp_port.uart != nullptr) {
// re-init port here for use in this thread
_msp_port.uart->begin(0);
return true;
}
return false;
}
void AP_MSP_Telem_Backend::process_outgoing_data()
{
if (is_scheduler_enabled()) {
AP_RCTelemetry::run_wfq_scheduler();
}
}
/*
Scheduler helper
*/
bool AP_MSP_Telem_Backend::is_packet_ready(uint8_t idx, bool queue_empty)
{
switch (idx) {
case EMPTY_SLOT: // empty slot
case NAME: // used for status_text messages
case STATUS: // flightmode
case CONFIG: // OSD config
case RAW_GPS: // lat,lon, speed
case COMP_GPS: // home dir,dist
case ATTITUDE: // Attitude
case ALTITUDE: // Altitude and Vario
case ANALOG: // Rssi, Battery, mAh, Current
case BATTERY_STATE: // voltage, capacity, current, mAh
#ifdef HAVE_AP_BLHELI_SUPPORT
case ESC_SENSOR_DATA: // esc temp + rpm
#endif
case RTC_DATETIME: // RTC
return true;
default:
return false;
}
}
/*
Invoked at each scheduler step
*/
void AP_MSP_Telem_Backend::process_packet(uint8_t idx)
{
if (idx == EMPTY_SLOT) {
return;
}
uint8_t out_buf[MSP_PORT_OUTBUF_SIZE] {};
msp_packet_t reply = {
.buf = { .ptr = out_buf, .end = MSP_ARRAYEND(out_buf), },
.cmd = (int16_t)msp_packet_type_map[idx],
.flags = 0,
.result = 0,
};
uint8_t *out_buf_head = reply.buf.ptr;
msp_process_out_command(msp_packet_type_map[idx], &reply.buf);
uint32_t len = reply.buf.ptr - &out_buf[0];
sbuf_switch_to_reader(&reply.buf, out_buf_head); // change streambuf direction
if (len > 0) {
// don't send zero length packets
msp_serial_encode(&_msp_port, &reply, _msp_port.msp_version);
}
_msp_port.c_state = MSP_IDLE;
}
uint8_t AP_MSP_Telem_Backend::calc_cell_count(const float battery_voltage)
{
return floorf((battery_voltage / CELLFULL) + 1);
}
float AP_MSP_Telem_Backend::get_vspeed_ms(void)
{
{
// release semaphore as soon as possible
AP_AHRS &_ahrs = AP::ahrs();
Vector3f v {};
WITH_SEMAPHORE(_ahrs.get_semaphore());
if (_ahrs.get_velocity_NED(v)) {
return -v.z;
}
}
AP_Baro &_baro = AP::baro();
WITH_SEMAPHORE(_baro.get_semaphore());
return _baro.get_climb_rate();
}
void AP_MSP_Telem_Backend::update_home_pos(home_state_t &home_state)
{
AP_AHRS &_ahrs = AP::ahrs();
WITH_SEMAPHORE(_ahrs.get_semaphore());
Location loc;
float alt;
if (_ahrs.get_position(loc) && _ahrs.home_is_set()) {
const Location &home_loc = _ahrs.get_home();
home_state.home_distance_m = home_loc.get_distance(loc);
home_state.home_bearing_cd = loc.get_bearing_to(home_loc);
} else {
home_state.home_distance_m = 0;
home_state.home_bearing_cd = 0;
}
_ahrs.get_relative_position_D_home(alt);
home_state.rel_altitude_cm = -alt * 100;
home_state.home_is_set = _ahrs.home_is_set();
}
void AP_MSP_Telem_Backend::update_gps_state(gps_state_t &gps_state)
{
AP_GPS& gps = AP::gps();
memset(&gps_state, 0, sizeof(gps_state));
WITH_SEMAPHORE(gps.get_semaphore());
gps_state.fix_type = gps.status() >= AP_GPS::GPS_Status::GPS_OK_FIX_3D? 2:0;
gps_state.num_sats = gps.num_sats();
if (gps_state.fix_type > 0) {
const Location &loc = AP::gps().location(); //get gps instance 0
gps_state.lat = loc.lat;
gps_state.lon = loc.lng;
gps_state.alt_m = loc.alt/100; // 1m resolution
gps_state.speed_cms = gps.ground_speed() * 100;
gps_state.ground_course_cd = gps.ground_course_cd();
}
}
void AP_MSP_Telem_Backend::update_battery_state(battery_state_t &battery_state)
{
memset(&battery_state, 0, sizeof(battery_state));
const AP_BattMonitor &_battery = AP::battery();
if (!_battery.current_amps(battery_state.batt_current_a)) {
battery_state.batt_current_a = 0;
}
if (!_battery.consumed_mah(battery_state.batt_consumed_mah)) {
battery_state.batt_consumed_mah = 0;
}
battery_state.batt_voltage_v =_battery.voltage();
battery_state.batt_capacity_mah = _battery.pack_capacity_mah();
const AP_Notify& notify = AP::notify();
if (notify.flags.failsafe_battery) {
battery_state.batt_state = MSP_BATTERY_CRITICAL;
} else {
battery_state.batt_state = MSP_BATTERY_OK;
}
// detect cellcount and update only if we get a higher values, we do not want to update it while discharging
uint8_t cc = calc_cell_count(battery_state.batt_voltage_v);
if (cc > battery_state.batt_cellcount) {
battery_state.batt_cellcount = cc;
}
}
void AP_MSP_Telem_Backend::update_airspeed(airspeed_state_t &airspeed_state)
{
AP_AHRS &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
airspeed_state.airspeed_have_estimate = ahrs.airspeed_estimate(airspeed_state.airspeed_estimate_ms);
if (!airspeed_state.airspeed_have_estimate) {
airspeed_state.airspeed_estimate_ms = 0.0;
}
}
/*
MSP OSDs can display up to MSP_TXT_VISIBLE_CHARS chars (UTF8 characters are supported)
We display the flight mode string either with or without wind state
*/
void AP_MSP_Telem_Backend::update_flight_mode_str(char *flight_mode_str, bool wind_enabled)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return;
}
#endif
AP_Notify *notify = AP_Notify::get_singleton();
if (notify == nullptr) {
return;
}
// clear
memset(flight_mode_str, 0, MSP_TXT_BUFFER_SIZE);
if (wind_enabled) {
/*
Wind is rendered next to the current flight mode, for the direction we use an UTF8 arrow (bytes 0xE286[nn])
example: MANU 4m/s ↗
*/
AP_AHRS &ahrs = AP::ahrs();
Vector3f v;
{
WITH_SEMAPHORE(ahrs.get_semaphore());
v = ahrs.wind_estimate();
}
bool invert_wind = false;
#if OSD_ENABLED
invert_wind = osd->screen[0].check_option(AP_OSD::OPTION_INVERTED_WIND);
#endif
if (invert_wind) {
v = -v;
}
uint8_t units = OSD_UNIT_METRIC;
#if OSD_ENABLED
units = osd->units == AP_OSD::UNITS_IMPERIAL ? OSD_UNIT_IMPERIAL : OSD_UNIT_METRIC;
#endif
// if needed convert m/s to ft/s
const float v_length = (units == OSD_UNIT_METRIC) ? v.length() : v.length() * 3.28084;
const char* unit = (units == OSD_UNIT_METRIC) ? "m/s" : "f/s";
if (v_length > 1.0f) {
const int32_t angle = wrap_360_cd(DEGX100 * atan2f(v.y, v.x) - ahrs.yaw_sensor);
const int32_t interval = 36000 / ARRAY_SIZE(arrows);
uint8_t arrow = arrows[((angle + interval / 2) / interval) % ARRAY_SIZE(arrows)];
snprintf(flight_mode_str, MSP_TXT_BUFFER_SIZE, "%s %d%s%c%c%c", notify->get_flight_mode_str(), (uint8_t)roundf(v_length), unit, 0xE2, 0x86, arrow);
} else {
snprintf(flight_mode_str, MSP_TXT_BUFFER_SIZE, "%s ---%s", notify->get_flight_mode_str(), unit);
}
} else {
/*
Flight mode is rendered with simple mode flags
examples:
MANU
MANU [S]
MANU [SS]
*/
#ifndef HAL_NO_GCS
const bool simple_mode = gcs().simple_input_active();
const bool supersimple_mode = gcs().supersimple_input_active();
const char* simple_mode_str = simple_mode ? " [S]" : (supersimple_mode ? " [SS]" : "");
char buffer[MSP_TXT_BUFFER_SIZE] {};
// flightmode
const uint8_t used = snprintf(buffer, ARRAY_SIZE(buffer), "%s%s", notify->get_flight_mode_str(), simple_mode_str);
// left pad
uint8_t left_padded_len = MSP_TXT_VISIBLE_CHARS - (MSP_TXT_VISIBLE_CHARS - used)/2;
snprintf(flight_mode_str, MSP_TXT_BUFFER_SIZE, "%*s", left_padded_len, buffer);
#endif
}
}
void AP_MSP_Telem_Backend::enable_warnings()
{
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return;
}
BIT_SET(msp->_osd_config.enabled_warnings, OSD_WARNING_FAIL_SAFE);
BIT_SET(msp->_osd_config.enabled_warnings, OSD_WARNING_BATTERY_CRITICAL);
}
void AP_MSP_Telem_Backend::process_incoming_data()
{
if (_msp_port.uart == nullptr) {
return;
}
uint32_t numc = MIN(_msp_port.uart->available(), 1024U);
if (numc > 0) {
// Process incoming bytes
while (numc-- > 0) {
const uint8_t c = _msp_port.uart->read();
msp_parse_received_data(&_msp_port, c);
if (_msp_port.c_state == MSP_COMMAND_RECEIVED) {
msp_process_received_command();
}
}
}
}
/*
ported from betaflight/src/main/msp/msp_serial.c
*/
void AP_MSP_Telem_Backend::msp_process_received_command()
{
uint8_t out_buf[MSP_PORT_OUTBUF_SIZE];
msp_packet_t reply = {
.buf = { .ptr = out_buf, .end = MSP_ARRAYEND(out_buf), },
.cmd = -1,
.flags = 0,
.result = 0,
};
uint8_t *out_buf_head = reply.buf.ptr;
msp_packet_t command = {
.buf = { .ptr = _msp_port.in_buf, .end = _msp_port.in_buf + _msp_port.data_size, },
.cmd = (int16_t)_msp_port.cmd_msp,
.flags = _msp_port.cmd_flags,
.result = 0,
};
const MSPCommandResult status = msp_process_command(&command, &reply);
if (status != MSP_RESULT_NO_REPLY) {
sbuf_switch_to_reader(&reply.buf, out_buf_head); // change streambuf direction
msp_serial_encode(&_msp_port, &reply, _msp_port.msp_version);
}
_msp_port.c_state = MSP_IDLE;
}
/*
ported from inav/src/main/fc/fc_msp.c
*/
MSPCommandResult AP_MSP_Telem_Backend::msp_process_command(msp_packet_t *cmd, msp_packet_t *reply)
{
MSPCommandResult ret = MSP_RESULT_ACK;
sbuf_t *dst = &reply->buf;
sbuf_t *src = &cmd->buf;
const uint16_t cmd_msp = cmd->cmd;
// initialize reply by default
reply->cmd = cmd->cmd;
if (MSP2_IS_SENSOR_MESSAGE(cmd_msp)) {
ret = msp_process_sensor_command(cmd_msp, src);
} else {
ret = msp_process_out_command(cmd_msp, dst);
}
// Process DONT_REPLY flag
if (cmd->flags & MSP_FLAG_DONT_REPLY) {
ret = MSP_RESULT_NO_REPLY;
}
reply->result = ret;
return ret;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_command(uint16_t cmd_msp, sbuf_t *dst)
{
switch (cmd_msp) {
case MSP_API_VERSION:
return msp_process_out_api_version(dst);
case MSP_FC_VARIANT:
return msp_process_out_fc_variant(dst);
case MSP_FC_VERSION:
return msp_process_out_fc_version(dst);
case MSP_BOARD_INFO:
return msp_process_out_board_info(dst);
case MSP_BUILD_INFO:
return msp_process_out_build_info(dst);
case MSP_NAME:
return msp_process_out_name(dst);
case MSP_OSD_CONFIG:
return msp_process_out_osd_config(dst);
case MSP_STATUS:
case MSP_STATUS_EX:
return msp_process_out_status(dst);
case MSP_RAW_GPS:
return msp_process_out_raw_gps(dst);
case MSP_COMP_GPS:
return msp_process_out_comp_gps(dst);
case MSP_ATTITUDE:
return msp_process_out_attitude(dst);
case MSP_ALTITUDE:
return msp_process_out_altitude(dst);
case MSP_ANALOG:
return msp_process_out_analog(dst);
case MSP_BATTERY_STATE:
return msp_process_out_battery_state(dst);
case MSP_UID:
return msp_process_out_uid(dst);
#ifdef HAVE_AP_BLHELI_SUPPORT
case MSP_ESC_SENSOR_DATA:
return msp_process_out_esc_sensor_data(dst);
#endif
case MSP_RTC:
return msp_process_out_rtc(dst);
case MSP_RC:
return msp_process_out_rc(dst);
default:
// MSP always requires an ACK even for unsupported messages
return MSP_RESULT_ACK;
}
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_sensor_command(uint16_t cmd_msp, sbuf_t *src)
{
MSP_UNUSED(src);
switch (cmd_msp) {
case MSP2_SENSOR_RANGEFINDER: {
const MSP::msp_rangefinder_data_message_t *pkt = (const MSP::msp_rangefinder_data_message_t *)src->ptr;
msp_handle_rangefinder(*pkt);
}
break;
case MSP2_SENSOR_OPTIC_FLOW: {
const MSP::msp_opflow_data_message_t *pkt = (const MSP::msp_opflow_data_message_t *)src->ptr;
msp_handle_opflow(*pkt);
}
break;
case MSP2_SENSOR_GPS: {
const MSP::msp_gps_data_message_t *pkt = (const MSP::msp_gps_data_message_t *)src->ptr;
msp_handle_gps(*pkt);
}
break;
case MSP2_SENSOR_COMPASS: {
const MSP::msp_compass_data_message_t *pkt = (const MSP::msp_compass_data_message_t *)src->ptr;
msp_handle_compass(*pkt);
}
break;
case MSP2_SENSOR_BAROMETER: {
const MSP::msp_baro_data_message_t *pkt = (const MSP::msp_baro_data_message_t *)src->ptr;
msp_handle_baro(*pkt);
}
break;
case MSP2_SENSOR_AIRSPEED: {
const MSP::msp_airspeed_data_message_t *pkt = (const MSP::msp_airspeed_data_message_t *)src->ptr;
msp_handle_airspeed(*pkt);
}
break;
}
return MSP_RESULT_NO_REPLY;
}
void AP_MSP_Telem_Backend::msp_handle_opflow(const MSP::msp_opflow_data_message_t &pkt)
{
#if HAL_MSP_OPTICALFLOW_ENABLED
OpticalFlow *optflow = AP::opticalflow();
if (optflow == nullptr) {
return;
}
optflow->handle_msp(pkt);
#endif
}
void AP_MSP_Telem_Backend::msp_handle_rangefinder(const MSP::msp_rangefinder_data_message_t &pkt)
{
#if HAL_MSP_RANGEFINDER_ENABLED
RangeFinder *rangefinder = AP::rangefinder();
if (rangefinder == nullptr) {
return;
}
rangefinder->handle_msp(pkt);
#endif
}
void AP_MSP_Telem_Backend::msp_handle_gps(const MSP::msp_gps_data_message_t &pkt)
{
#if HAL_MSP_GPS_ENABLED
AP::gps().handle_msp(pkt);
#endif
}
void AP_MSP_Telem_Backend::msp_handle_compass(const MSP::msp_compass_data_message_t &pkt)
{
#if HAL_MSP_COMPASS_ENABLED
AP::compass().handle_msp(pkt);
#endif
}
void AP_MSP_Telem_Backend::msp_handle_baro(const MSP::msp_baro_data_message_t &pkt)
{
#if HAL_MSP_BARO_ENABLED
AP::baro().handle_msp(pkt);
#endif
}
void AP_MSP_Telem_Backend::msp_handle_airspeed(const MSP::msp_airspeed_data_message_t &pkt)
{
#if HAL_MSP_AIRSPEED_ENABLED
auto *airspeed = AP::airspeed();
if (airspeed) {
airspeed->handle_msp(pkt);
}
#endif
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_raw_gps(sbuf_t *dst)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return MSP_RESULT_ERROR;
}
#endif
gps_state_t gps_state;
update_gps_state(gps_state);
// handle airspeed override
bool airspeed_en = false;
#if OSD_ENABLED
airspeed_en = osd->screen[0].aspeed.enabled;
#endif
if (airspeed_en) {
airspeed_state_t airspeed_state;
update_airspeed(airspeed_state);
gps_state.speed_cms = airspeed_state.airspeed_estimate_ms * 100; // airspeed in cm/s
}
sbuf_write_data(dst, &gps_state, sizeof(gps_state));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_comp_gps(sbuf_t *dst)
{
home_state_t home_state;
update_home_pos(home_state);
// no need to apply yaw compensation, the DJI air unit will do it for us :-)
int32_t home_angle_deg = home_state.home_bearing_cd * 0.01;
if (home_state.home_distance_m < 2) {
//avoid fast rotating arrow at small distances
home_angle_deg = 0;
}
struct PACKED {
uint16_t dist_home_m;
uint16_t home_angle_deg;
uint8_t toggle_gps;
} p;
p.dist_home_m = home_state.home_distance_m;
p.home_angle_deg = home_angle_deg;
p.toggle_gps = 1;
sbuf_write_data(dst, &p, sizeof(p));
return MSP_RESULT_ACK;
}
// Autoscroll message is the same as in minimosd-extra.
// Thanks to night-ghost for the approach.
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_name(sbuf_t *dst)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return MSP_RESULT_ERROR;
}
#endif
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
AP_Notify * notify = AP_Notify::get_singleton();
if (notify) {
uint16_t msgtime_ms = 10000; //default is 10 secs
#if OSD_ENABLED
msgtime_ms = AP::osd()->msgtime_s * 1000;
#endif
// text message is visible for _msp.msgtime_s but only if
// a flight mode change did not steal focus
const uint32_t visible_time_ms = AP_HAL::millis() - notify->get_text_updated_millis();
if (visible_time_ms < msgtime_ms && !msp->_msp_status.flight_mode_focus) {
char buffer[NOTIFY_TEXT_BUFFER_SIZE];
strncpy(buffer, notify->get_text(), ARRAY_SIZE(buffer));
const uint8_t len = strnlen(buffer, ARRAY_SIZE(buffer));
for (uint8_t i=0; i<len; i++) {
//normalize whitespace
if (isspace(buffer[i])) {
buffer[i] = ' ';
} else {
//converted to uppercase,
buffer[i] = toupper(buffer[i]);
}
}
int8_t start_position = 0;
//scroll if required
//scroll pattern: wait, scroll to the left, wait, scroll to the right
if (len > MSP_TXT_VISIBLE_CHARS) {
const uint8_t chars_to_scroll = len - MSP_TXT_VISIBLE_CHARS;
const uint8_t total_cycles = 2*message_scroll_delay + 2*chars_to_scroll;
const uint8_t current_cycle = (visible_time_ms / message_scroll_time_ms) % total_cycles;
//calculate scroll start_position
if (current_cycle < total_cycles/2) {
//move to the left
start_position = current_cycle - message_scroll_delay;
} else {
//move to the right
start_position = total_cycles - current_cycle;
}
start_position = constrain_int16(start_position, 0, chars_to_scroll);
uint8_t end_position = start_position + MSP_TXT_VISIBLE_CHARS;
//ensure array boundaries
start_position = MIN(start_position, int8_t(ARRAY_SIZE(buffer)-1));
end_position = MIN(end_position, int8_t(ARRAY_SIZE(buffer)-1));
//trim invisible part
buffer[end_position] = 0;
}
sbuf_write_data(dst, buffer + start_position, strlen(buffer + start_position)); // max MSP_TXT_VISIBLE_CHARS chars general text...
} else {
bool wind_en = false;
char flight_mode_str[MSP_TXT_BUFFER_SIZE];
#if OSD_ENABLED
wind_en = osd->screen[0].wind.enabled;
#endif
update_flight_mode_str(flight_mode_str, wind_en);
sbuf_write_data(dst, flight_mode_str, ARRAY_SIZE(flight_mode_str)); // rendered as up to MSP_TXT_VISIBLE_CHARS chars with UTF8 support
}
}
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_status(sbuf_t *dst)
{
const uint32_t mode_bitmask = get_osd_flight_mode_bitmask();
sbuf_write_u16(dst, 0); // task delta time
sbuf_write_u16(dst, 0); // I2C error count
sbuf_write_u16(dst, 0); // sensor status
sbuf_write_data(dst, &mode_bitmask, 4); // unconditional part of flags, first 32 bits
sbuf_write_u8(dst, 0);
sbuf_write_u16(dst, constrain_int16(0, 0, 100)); //system load
sbuf_write_u16(dst, 0); // gyro cycle time
// Cap BoxModeFlags to 32 bits
sbuf_write_u8(dst, 0);
// Write arming disable flags
sbuf_write_u8(dst, 1);
sbuf_write_u32(dst, !AP::notify().flags.armed);
// Extra flags
sbuf_write_u8(dst, 0);
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_osd_config(sbuf_t *dst)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return MSP_RESULT_ERROR;
}
#endif
const AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
sbuf_write_u8(dst, OSD_FLAGS_OSD_FEATURE); // flags
sbuf_write_u8(dst, 0); // video system
// Configuration
uint8_t units = OSD_UNIT_METRIC;
#if OSD_ENABLED
units = osd->units == AP_OSD::UNITS_METRIC ? OSD_UNIT_METRIC : OSD_UNIT_IMPERIAL;
#endif
sbuf_write_u8(dst, units); // units
// Alarms
sbuf_write_u8(dst, msp->_osd_config.rssi_alarm); // rssi alarm
sbuf_write_u16(dst, msp->_osd_config.cap_alarm); // capacity alarm
// Reuse old timer alarm (U16) as OSD_ITEM_COUNT
sbuf_write_u8(dst, 0);
sbuf_write_u8(dst, OSD_ITEM_COUNT); // osd items count
sbuf_write_u16(dst, msp->_osd_config.alt_alarm); // altitude alarm
// element position and visibility
uint16_t pos = 0; // default is hide this element
for (uint8_t i = 0; i < OSD_ITEM_COUNT; i++) {
pos = 0; // 0 is hide this item
if (msp->_osd_item_settings[i] != nullptr) { // ok supported
if (msp->_osd_item_settings[i]->enabled) { // ok enabled
// let's check if we need to hide this dynamically
if (!BIT_IS_SET(osd_hidden_items_bitmask, i)) {
pos = MSP_OSD_POS(msp->_osd_item_settings[i]);
}
}
}
sbuf_write_u16(dst, pos);
}
// post flight statistics
sbuf_write_u8(dst, OSD_STAT_COUNT); // stats items count
for (uint8_t i = 0; i < OSD_STAT_COUNT; i++ ) {
sbuf_write_u16(dst, 0); // stats not supported
}
// timers
sbuf_write_u8(dst, OSD_TIMER_COUNT); // timers
for (uint8_t i = 0; i < OSD_TIMER_COUNT; i++) {
// no timer support
sbuf_write_u16(dst, 0);
}
// Enabled warnings
// API < 1.41
// Send low word first for backwards compatibility
sbuf_write_u16(dst, (uint16_t)(msp->_osd_config.enabled_warnings & 0xFFFF)); // Enabled warnings
// API >= 1.41
// Send the warnings count and 32bit enabled warnings flags.
// Add currently active OSD profile (0 indicates OSD profiles not available).
// Add OSD stick overlay mode (0 indicates OSD stick overlay not available).
sbuf_write_u8(dst, OSD_WARNING_COUNT); // warning count
sbuf_write_u32(dst, msp->_osd_config.enabled_warnings); // enabled warning
// If the feature is not available there is only 1 profile and it's always selected
sbuf_write_u8(dst, 1); // available profiles
sbuf_write_u8(dst, 1); // selected profile
sbuf_write_u8(dst, 0); // OSD stick overlay
// API >= 1.43
// Add the camera frame element width/height
//sbuf_write_u8(dst, osdConfig()->camera_frame_width);
//sbuf_write_u8(dst, osdConfig()->camera_frame_height);
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_attitude(sbuf_t *dst)
{
AP_AHRS &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
struct PACKED {
int16_t roll;
int16_t pitch;
int16_t yaw;
} attitude;
attitude.roll = ahrs.roll_sensor * 0.1; // centidegress to decidegrees
attitude.pitch = ahrs.pitch_sensor * 0.1; // centidegress to decidegrees
attitude.yaw = ahrs.yaw_sensor * 0.01; // centidegress to degrees
sbuf_write_data(dst, &attitude, sizeof(attitude));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_altitude(sbuf_t *dst)
{
home_state_t home_state;
update_home_pos(home_state);
sbuf_write_u32(dst, home_state.rel_altitude_cm); // relative altitude cm
sbuf_write_u16(dst, (int16_t)get_vspeed_ms() * 100); // climb rate cm/s
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_analog(sbuf_t *dst)
{
AP_RSSI* rssi = AP::rssi();
if (rssi == nullptr) {
return MSP_RESULT_ERROR;
}
battery_state_t battery_state;
update_battery_state(battery_state);
struct PACKED {
uint8_t voltage_dv;
uint16_t mah;
uint16_t rssi;
int16_t current_ca;
uint16_t voltage_cv;
} battery;
battery.voltage_dv = constrain_int16(battery_state.batt_voltage_v * 10, 0, 255); // battery voltage V to dV
battery.mah = constrain_int32(battery_state.batt_consumed_mah, 0, 0xFFFF); // milliamp hours drawn from battery
battery.rssi = rssi->enabled() ? rssi->read_receiver_rssi() * 1023 : 0; // rssi 0-1 to 0-1023
battery.current_ca = constrain_int32(battery_state.batt_current_a * 100, -0x8000, 0x7FFF); // current A to cA (0.01 steps, range is -320A to 320A)
battery.voltage_cv = constrain_int32(battery_state.batt_voltage_v * 100,0,0xFFFF); // battery voltage in 0.01V steps
sbuf_write_data(dst, &battery, sizeof(battery));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_battery_state(sbuf_t *dst)
{
const AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
battery_state_t battery_state;
update_battery_state(battery_state);
struct PACKED {
uint8_t cellcount;
uint16_t capacity_mah;
uint8_t voltage_dv;
uint16_t mah;
int16_t current_ca;
uint8_t state;
uint16_t voltage_cv;
} battery;
battery.cellcount = constrain_int16((msp->_cellcount > 0 ? msp->_cellcount : battery_state.batt_cellcount), 0, 255); // cell count 0 indicates battery not detected.
battery.capacity_mah = battery_state.batt_capacity_mah; // in mAh
battery.voltage_dv = constrain_int16(battery_state.batt_voltage_v * 10, 0, 255); // battery voltage V to dV
battery.mah = MIN(battery_state.batt_consumed_mah, 0xFFFF); // milliamp hours drawn from battery
battery.current_ca = constrain_int32(battery_state.batt_current_a * 100, -0x8000, 0x7FFF); // current A to cA (0.01 steps, range is -320A to 320A)
battery.state = battery_state.batt_state; // BATTERY: OK=0, CRITICAL=2
battery.voltage_cv = constrain_int32(battery_state.batt_voltage_v * 100, 0, 0x7FFF); // battery voltage in 0.01V steps
sbuf_write_data(dst, &battery, sizeof(battery));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_esc_sensor_data(sbuf_t *dst)
{
#ifdef HAVE_AP_BLHELI_SUPPORT
AP_BLHeli *blheli = AP_BLHeli::get_singleton();
if (blheli && blheli->have_telem_data()) {
const uint8_t num_motors = blheli->get_num_motors();
sbuf_write_u8(dst, num_motors);
for (uint8_t i = 0; i < num_motors; i++) {
AP_BLHeli::telem_data td {};
blheli->get_telem_data(i, td);
sbuf_write_u8(dst, td.temperature); // deg
sbuf_write_u16(dst, td.rpm / 100);
}
}
#endif
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_rtc(sbuf_t *dst)
{
tm localtime_tm {}; // year is relative to 1900
uint64_t time_usec = 0;
if (AP::rtc().get_utc_usec(time_usec)) { // may fail, leaving time_unix at 0
const time_t time_sec = time_usec / 1000000;
localtime_tm = *gmtime(&time_sec);
}
struct PACKED {
uint16_t year;
uint8_t mon;
uint8_t mday;
uint8_t hour;
uint8_t min;
uint8_t sec;
uint16_t millis;
} rtc;
rtc.year = localtime_tm.tm_year + 1900; // tm_year is relative to year 1900
rtc.mon = localtime_tm.tm_mon + 1; // MSP requires [1-12] months
rtc.mday = localtime_tm.tm_mday;
rtc.hour = localtime_tm.tm_hour;
rtc.min = localtime_tm.tm_min;
rtc.sec = localtime_tm.tm_sec;
rtc.millis = (time_usec / 1000U) % 1000U;
sbuf_write_data(dst, &rtc, sizeof(rtc));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_rc(sbuf_t *dst)
{
const RCMapper* rcmap = AP::rcmap();
if (rcmap == nullptr) {
return MSP_RESULT_ERROR;
}
uint16_t values[16] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
struct PACKED {
uint16_t a;
uint16_t e;
uint16_t r;
uint16_t t;
} rc;
// send only 4 channels, MSP order is AERT
rc.a = values[rcmap->roll()]; // A
rc.e = values[rcmap->pitch()]; // E
rc.r = values[rcmap->yaw()]; // R
rc.t = values[rcmap->throttle()]; // T
sbuf_write_data(dst, &rc, sizeof(rc));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_board_info(sbuf_t *dst)
{
const AP_FWVersion &fwver = AP::fwversion();
sbuf_write_data(dst, "ARDU", BOARD_IDENTIFIER_LENGTH);
sbuf_write_u16(dst, 0);
sbuf_write_u8(dst, 0);
sbuf_write_u8(dst, 0);
sbuf_write_u8(dst, strlen(fwver.fw_string));
sbuf_write_data(dst, fwver.fw_string, strlen(fwver.fw_string));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_build_info(sbuf_t *dst)
{
const AP_FWVersion &fwver = AP::fwversion();
// we don't use real dates here as that would mean we don't get
// consistent builds. Being able to reproduce the exact build at a
// later date is a valuable property of the code
sbuf_write_data(dst, "Jan 01 1980", BUILD_DATE_LENGTH);
sbuf_write_data(dst, "00:00:00", BUILD_TIME_LENGTH);
sbuf_write_data(dst, fwver.fw_hash_str, GIT_SHORT_REVISION_LENGTH);
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_uid(sbuf_t *dst)
{
uint8_t id[12] {};
uint8_t len = sizeof(id);
hal.util->get_system_id_unformatted(id, len);
sbuf_write_data(dst, id, sizeof(id));
return MSP_RESULT_ACK;
}
void AP_MSP_Telem_Backend::hide_osd_items(void)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return;
}
#endif
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return;
}
const AP_Notify &notify = AP::notify();
// clear all and only set the flashing ones
BIT_CLEAR(osd_hidden_items_bitmask, OSD_GPS_SATS);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_HOME_DIR);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_HOME_DIST);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_GPS_SPEED);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_CRAFT_NAME);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_AVG_CELL_VOLTAGE);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_MAIN_BATT_VOLTAGE);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_RTC_DATETIME);
if (msp->_msp_status.flashing_on) {
// flash satcount when no 3D Fix
gps_state_t gps_state;
update_gps_state(gps_state);
if (gps_state.fix_type == 0) {
BIT_SET(osd_hidden_items_bitmask, OSD_GPS_SATS);
}
// flash home dir and distance if home is not set
home_state_t home_state;
update_home_pos(home_state);
if (!home_state.home_is_set) {
BIT_SET(osd_hidden_items_bitmask, OSD_HOME_DIR);
BIT_SET(osd_hidden_items_bitmask, OSD_HOME_DIST);
}
// flash airspeed if there's no estimate
bool airspeed_en = false;
#if OSD_ENABLED
airspeed_en = osd->screen[0].aspeed.enabled;
#endif
if (airspeed_en) {
airspeed_state_t airspeed_state;
update_airspeed(airspeed_state);
if (!airspeed_state.airspeed_have_estimate) {
BIT_SET(osd_hidden_items_bitmask, OSD_GPS_SPEED);
}
}
// flash text flightmode for 3secs after each change
if (msp->_msp_status.flight_mode_focus) {
BIT_SET(osd_hidden_items_bitmask, OSD_CRAFT_NAME);
}
// flash battery on failsafe
if (notify.flags.failsafe_battery) {
BIT_SET(osd_hidden_items_bitmask, OSD_AVG_CELL_VOLTAGE);
BIT_SET(osd_hidden_items_bitmask, OSD_MAIN_BATT_VOLTAGE);
}
// flash rtc if no time available
uint64_t time_usec;
if (!AP::rtc().get_utc_usec(time_usec)) {
BIT_SET(osd_hidden_items_bitmask, OSD_RTC_DATETIME);
}
}
}
#endif //HAL_MSP_ENABLED