ardupilot/ArduPlane/mode_qrtl.cpp

230 lines
9.5 KiB
C++

#include "mode.h"
#include "Plane.h"
#if HAL_QUADPLANE_ENABLED
bool ModeQRTL::_enter()
{
// treat QRTL as QLAND if we are in guided wait takeoff state, to cope
// with failsafes during GUIDED->AUTO takeoff sequence
if (plane.quadplane.guided_wait_takeoff_on_mode_enter) {
plane.set_mode(plane.mode_qland, ModeReason::QLAND_INSTEAD_OF_RTL);
return true;
}
submode = SubMode::RTL;
plane.prev_WP_loc = plane.current_loc;
int32_t RTL_alt_abs_cm = plane.home.alt + quadplane.qrtl_alt*100UL;
if (quadplane.motors->get_desired_spool_state() == AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) {
// VTOL motors are active, either in VTOL flight or assisted flight
Location destination = plane.calc_best_rally_or_home_location(plane.current_loc, RTL_alt_abs_cm);
const float dist = plane.current_loc.get_distance(destination);
const float radius = get_VTOL_return_radius();
// Climb at least to a cone around home of hight of QRTL alt and radius of radius
// Always climb up to at least Q_RTL_ALT_MIN, constrain Q_RTL_ALT_MIN between Q_LAND_FINAL_ALT and Q_RTL_ALT
const float min_climb = constrain_float(quadplane.qrtl_alt_min, quadplane.land_final_alt, quadplane.qrtl_alt);
const float target_alt = MAX(quadplane.qrtl_alt * (dist / MAX(radius, dist)), min_climb);
#if AP_TERRAIN_AVAILABLE
const bool use_terrain = plane.terrain_enabled_in_mode(mode_number());
#else
const bool use_terrain = false;
#endif
const float dist_to_climb = target_alt - plane.relative_ground_altitude(plane.g.rangefinder_landing, use_terrain);
if (is_positive(dist_to_climb)) {
// climb before returning, only next waypoint altitude is used
submode = SubMode::climb;
plane.next_WP_loc = plane.current_loc;
#if AP_TERRAIN_AVAILABLE
int32_t curent_alt_terrain_cm;
if (use_terrain && plane.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, curent_alt_terrain_cm)) {
plane.next_WP_loc.set_alt_cm(curent_alt_terrain_cm + dist_to_climb * 100UL, Location::AltFrame::ABOVE_TERRAIN);
return true;
}
#endif
plane.next_WP_loc.set_alt_cm(plane.current_loc.alt + dist_to_climb * 100UL, plane.current_loc.get_alt_frame());
return true;
} else if (dist < radius) {
// Above home "cone", return at curent altitude if lower than QRTL alt
int32_t current_alt_abs_cm;
if (plane.current_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, current_alt_abs_cm)) {
RTL_alt_abs_cm = MIN(RTL_alt_abs_cm, current_alt_abs_cm);
}
// we're close to destination and already running VTOL motors, don't transition and don't climb
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 d=%.1f r=%.1f", dist, radius);
poscontrol.set_state(QuadPlane::QPOS_POSITION1);
}
}
// use do_RTL() to setup next_WP_loc
plane.do_RTL(RTL_alt_abs_cm);
quadplane.poscontrol_init_approach();
int32_t from_alt;
int32_t to_alt;
if (plane.current_loc.get_alt_cm(Location::AltFrame::ABSOLUTE,from_alt) && plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE,to_alt)) {
poscontrol.slow_descent = from_alt > to_alt;
return true;
}
// default back to old method
poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt);
return true;
}
void ModeQRTL::update()
{
plane.mode_qstabilize.update();
}
/*
handle QRTL mode
*/
void ModeQRTL::run()
{
const uint32_t now = AP_HAL::millis();
if (quadplane.tailsitter.in_vtol_transition(now)) {
// Tailsitters in FW pull up phase of VTOL transition run FW controllers
Mode::run();
return;
}
switch (submode) {
case SubMode::climb: {
// request zero velocity
Vector2f vel, accel;
pos_control->input_vel_accel_xy(vel, accel);
quadplane.run_xy_controller();
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll_cd();
plane.nav_pitch_cd = pos_control->get_pitch_cd();
plane.quadplane.assign_tilt_to_fwd_thr();
if (quadplane.transition->set_VTOL_roll_pitch_limit(plane.nav_roll_cd, plane.nav_pitch_cd)) {
pos_control->set_externally_limited_xy();
}
// weathervane with no pilot input
quadplane.disable_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
quadplane.get_weathervane_yaw_rate_cds());
// climb at full WP nav speed
quadplane.set_climb_rate_cms(quadplane.wp_nav->get_default_speed_up());
quadplane.run_z_controller();
// Climb done when stopping point reaches target altitude
Vector3p stopping_point;
pos_control->get_stopping_point_z_cm(stopping_point.z);
Location stopping_loc = Location(stopping_point.tofloat(), Location::AltFrame::ABOVE_ORIGIN);
ftype alt_diff;
if (!stopping_loc.get_alt_distance(plane.next_WP_loc, alt_diff) || is_positive(alt_diff)) {
// climb finished or cant get alt diff, head home
submode = SubMode::RTL;
plane.prev_WP_loc = plane.current_loc;
int32_t RTL_alt_abs_cm = plane.home.alt + quadplane.qrtl_alt*100UL;
Location destination = plane.calc_best_rally_or_home_location(plane.current_loc, RTL_alt_abs_cm);
const float dist = plane.current_loc.get_distance(destination);
const float radius = get_VTOL_return_radius();
if (dist < radius) {
// if close to home return at current target altitude
int32_t target_alt_abs_cm;
if (plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, target_alt_abs_cm)) {
RTL_alt_abs_cm = MIN(RTL_alt_abs_cm, target_alt_abs_cm);
}
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 d=%.1f r=%.1f", dist, radius);
poscontrol.set_state(QuadPlane::QPOS_POSITION1);
}
plane.do_RTL(RTL_alt_abs_cm);
quadplane.poscontrol_init_approach();
if (plane.current_loc.get_alt_distance(plane.next_WP_loc, alt_diff)) {
poscontrol.slow_descent = is_positive(alt_diff);
} else {
// default back to old method
poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt);
}
}
break;
}
case SubMode::RTL: {
quadplane.vtol_position_controller();
if (poscontrol.get_state() > QuadPlane::QPOS_POSITION2) {
// change target altitude to home alt
plane.next_WP_loc.alt = plane.home.alt;
}
if (poscontrol.get_state() >= QuadPlane::QPOS_POSITION2) {
// start landing logic
quadplane.verify_vtol_land();
}
// when in approach allow stick mixing
if (quadplane.poscontrol.get_state() == QuadPlane::QPOS_AIRBRAKE ||
quadplane.poscontrol.get_state() == QuadPlane::QPOS_APPROACH) {
plane.stabilize_stick_mixing_fbw();
}
break;
}
}
// Stabilize with fixed wing surfaces
plane.stabilize_roll();
plane.stabilize_pitch();
}
/*
update target altitude for QRTL profile
*/
void ModeQRTL::update_target_altitude()
{
/*
update height target in approach
*/
if ((submode != SubMode::RTL) || (plane.quadplane.poscontrol.get_state() != QuadPlane::QPOS_APPROACH)) {
Mode::update_target_altitude();
return;
}
/*
initially approach at RTL_ALT_CM, then drop down to QRTL_ALT based on maximum sink rate from TECS,
giving time to lose speed before we transition
*/
const float radius = MAX(fabsf(float(plane.aparm.loiter_radius)), fabsf(float(plane.g.rtl_radius)));
const float rtl_alt_delta = MAX(0, plane.g.RTL_altitude_cm*0.01 - plane.quadplane.qrtl_alt);
const float sink_time = rtl_alt_delta / MAX(0.6*plane.TECS_controller.get_max_sinkrate(), 1);
const float sink_dist = plane.aparm.airspeed_cruise * sink_time;
const float dist = plane.auto_state.wp_distance;
const float rad_min = 2*radius;
const float rad_max = 20*radius;
float alt = linear_interpolate(0, rtl_alt_delta,
dist,
rad_min, MAX(rad_min, MIN(rad_max, rad_min+sink_dist)));
Location loc = plane.next_WP_loc;
loc.alt += alt*100;
plane.set_target_altitude_location(loc);
plane.altitude_error_cm = plane.calc_altitude_error_cm();
}
// only nudge during approach
bool ModeQRTL::allows_throttle_nudging() const
{
return (submode == SubMode::RTL) && (plane.quadplane.poscontrol.get_state() == QuadPlane::QPOS_APPROACH);
}
// Return the radius from destination at which pure VTOL flight should be used, no transition to FW
float ModeQRTL::get_VTOL_return_radius() const
{
return MAX(fabsf(float(plane.aparm.loiter_radius)), fabsf(float(plane.g.rtl_radius))) * 1.5;
}
#endif