ardupilot/ArduCopter/Attitude.pde

844 lines
28 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void
get_stabilize_roll(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - ahrs.roll_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt);
// output control - we do not use rate controllers for helicopters so send directly to servos
g.rc_1.servo_out = constrain(target_angle, -4500, 4500);
#else
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle);
int16_t i_stab;
if(labs(ahrs.roll_sensor) < 500) {
target_angle = constrain(target_angle, -500, 500);
i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt);
}else{
i_stab = g.pi_stabilize_roll.get_integrator();
}
// set targets for rate controller
roll_rate_target_ef = target_rate;
roll_rate_trim_ef = i_stab;
#endif
}
static void
get_stabilize_pitch(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - ahrs.pitch_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt);
// output control - we do not use rate controllers for helicopters so send directly to servos
g.rc_2.servo_out = constrain(target_angle, -4500, 4500);
#else
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle);
int16_t i_stab;
if(labs(ahrs.pitch_sensor) < 500) {
target_angle = constrain(target_angle, -500, 500);
i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt);
}else{
i_stab = g.pi_stabilize_pitch.get_integrator();
}
// set targets for rate controller
pitch_rate_target_ef = target_rate;
pitch_rate_trim_ef = i_stab;
#endif
}
static void
get_stabilize_yaw(int32_t target_angle)
{
int32_t target_rate,i_term;
int32_t angle_error;
int32_t output = 0;
// angle error
angle_error = wrap_180(target_angle - ahrs.yaw_sensor);
// limit the error we're feeding to the PID
#if FRAME_CONFIG == HELI_FRAME
angle_error = constrain(angle_error, -4500, 4500);
#else
angle_error = constrain(angle_error, -4000, 4000);
#endif
// convert angle error to desired Rate:
target_rate = g.pi_stabilize_yaw.get_p(angle_error);
i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt);
// do not use rate controllers for helicotpers with external gyros
#if FRAME_CONFIG == HELI_FRAME
if(motors.ext_gyro_enabled) {
g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500);
}
#endif
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value);
}
}
#endif
// set targets for rate controller
yaw_rate_target_ef = target_rate;
yaw_rate_trim_ef = i_term;
}
static void
get_acro_roll(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
roll_rate_target_ef = target_rate;
roll_rate_trim_ef = 0;
}
static void
get_acro_pitch(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
pitch_rate_target_ef = target_rate;
pitch_rate_trim_ef = 0;
}
static void
get_acro_yaw(int32_t target_rate)
{
target_rate = g.pi_stabilize_yaw.get_p(target_rate);
// set targets for rate controller
yaw_rate_target_ef = target_rate;
yaw_rate_trim_ef = 0;
}
/*
* static int16_t
* get_acro_yaw2(int32_t target_rate)
* {
* int32_t p,i,d; // used to capture pid values for logging
* int32_t rate_error; // current yaw rate error
* int32_t current_rate; // current real yaw rate
* int32_t decel_boost; // gain scheduling if we are overshooting
* int32_t output; // output to rate controller
*
* target_rate = g.pi_stabilize_yaw.get_p(target_rate);
* current_rate = omega.z * DEGX100;
* rate_error = target_rate - current_rate;
*
* //Gain Scheduling:
* //If the yaw input is to the right, but stick is moving to the middle
* //and actual rate is greater than the target rate then we are
* //going to overshoot the yaw target to the left side, so we should
* //strengthen the yaw output to slow down the yaw!
*
* #if (FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME)
* static int32_t last_target_rate = 0; // last iteration's target rate
* if ( target_rate > 0 && last_target_rate > target_rate && rate_error < 0 ){
* decel_boost = 1;
* } else if (target_rate < 0 && last_target_rate < target_rate && rate_error > 0 ){
* decel_boost = 1;
* } else if (target_rate == 0 && labs(current_rate) > 1000){
* decel_boost = 1;
* } else {
* decel_boost = 0;
* }
*
* last_target_rate = target_rate;
*
* #else
*
* decel_boost = 0;
*
* #endif
*
* // separately calculate p, i, d values for logging
* // we will use d=0, and hold i at it's last value
* // since manual inputs are never steady state
*
* p = g.pid_rate_yaw.get_p(rate_error);
* i = g.pid_rate_yaw.get_integrator();
* d = 0;
*
* if (decel_boost){
* p *= 2;
* }
*
* output = p+i+d;
*
* // output control:
* // constrain output
* output = constrain(output, -4500, 4500);
*
* #if LOGGING_ENABLED == ENABLED
* static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
* // log output if PID loggins is on and we are tuning the yaw
* if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
* log_counter++;
* if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
* log_counter = 0;
* Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
* }
* }
* #endif
*
* return output;
* }
*/
// update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers
void
update_rate_contoller_targets()
{
// convert earth frame rates to body frame rates
roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef;
pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * yaw_rate_target_ef;
yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef + sin_roll * pitch_rate_target_ef;
}
// run roll, pitch and yaw rate controllers and send output to motors
// targets for these controllers comes from stabilize controllers
void
run_rate_controllers()
{
#if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro
if(!motors.ext_gyro_enabled) {
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf) + yaw_rate_trim_ef;
}
#else
// call rate controllers
g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf) + roll_rate_trim_ef;
g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf) + pitch_rate_trim_ef;
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf) + yaw_rate_trim_ef;
#endif
}
static int16_t
get_rate_roll(int32_t target_rate)
{
static int32_t last_rate = 0; // previous iterations rate
int32_t p,i,d; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
int32_t rate_d; // roll's acceleration
int32_t output; // output from pid controller
int32_t rate_d_dampener; // value to dampen output based on acceleration
// get current rate
current_rate = (omega.x * DEGX100);
// calculate and filter the acceleration
rate_d = roll_rate_d_filter.apply(current_rate - last_rate);
// store rate for next iteration
last_rate = current_rate;
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_roll.get_p(rate_error);
// freeze I term if we've breached roll-pitch limits
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) {
i = g.pid_rate_roll.get_integrator();
}else{
i = g.pid_rate_roll.get_i(rate_error, G_Dt);
}
d = g.pid_rate_roll.get_d(rate_error, G_Dt);
output = p + i + d;
// Dampening output with D term
rate_d_dampener = rate_d * roll_scale_d;
rate_d_dampener = constrain(rate_d_dampener, -400, 400);
output -= rate_d_dampener;
// constrain output
output = constrain(output, -5000, 5000);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d-rate_d_dampener, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_rate_pitch(int32_t target_rate)
{
static int32_t last_rate = 0; // previous iterations rate
int32_t p,i,d; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
int32_t rate_d; // roll's acceleration
int32_t output; // output from pid controller
int32_t rate_d_dampener; // value to dampen output based on acceleration
// get current rate
current_rate = (omega.y * DEGX100);
// calculate and filter the acceleration
rate_d = pitch_rate_d_filter.apply(current_rate - last_rate);
// store rate for next iteration
last_rate = current_rate;
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_pitch.get_p(rate_error);
// freeze I term if we've breached roll-pitch limits
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) {
i = g.pid_rate_pitch.get_integrator();
}else{
i = g.pid_rate_pitch.get_i(rate_error, G_Dt);
}
d = g.pid_rate_pitch.get_d(rate_error, G_Dt);
output = p + i + d;
// Dampening output with D term
rate_d_dampener = rate_d * pitch_scale_d;
rate_d_dampener = constrain(rate_d_dampener, -400, 400);
output -= rate_d_dampener;
// constrain output
output = constrain(output, -5000, 5000);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d-rate_d_dampener, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_rate_yaw(int32_t target_rate)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t rate_error;
int32_t output;
// rate control
rate_error = target_rate - (omega.z * DEGX100);
// separately calculate p, i, d values for logging
p = g.pid_rate_yaw.get_p(rate_error);
// freeze I term if we've breached yaw limits
if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) {
i = g.pid_rate_yaw.get_integrator();
}else{
i = g.pid_rate_yaw.get_i(rate_error, G_Dt);
}
d = g.pid_rate_yaw.get_d(rate_error, G_Dt);
output = p+i+d;
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
}
}
#endif
#if FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME
// constrain output
return output;
#else
// output control:
int16_t yaw_limit = 2200 + abs(g.rc_4.control_in);
// smoother Yaw control:
return constrain(output, -yaw_limit, yaw_limit);
#endif
}
static int16_t
get_throttle_rate(int16_t z_target_speed)
{
int32_t p,i,d; // used to capture pid values for logging
int16_t z_rate_error, output;
// calculate rate error
#if INERTIAL_NAV == ENABLED
z_rate_error = z_target_speed - accels_velocity.z; // calc the speed error
#else
z_rate_error = z_target_speed - climb_rate; // calc the speed error
#endif
int32_t tmp = (z_target_speed * z_target_speed * (int32_t)g.throttle_cruise) / 200000;
if(z_target_speed < 0) tmp = -tmp;
output = constrain(tmp, -3200, 3200);
// separately calculate p, i, d values for logging
p = g.pid_throttle.get_p(z_rate_error);
// freeze I term if we've breached throttle limits
if( motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT) ) {
i = g.pid_throttle.get_integrator();
}else{
i = g.pid_throttle.get_i(z_rate_error, .02);
}
d = g.pid_throttle.get_d(z_rate_error, .02);
//
// limit the rate
output += constrain(p+i+d, -80, 120);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_THROTTLE_KP ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz
log_counter = 0;
Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value);
}
}
#endif
return output;
}
// Keeps old data out of our calculation / logs
static void reset_nav_params(void)
{
nav_throttle = 0;
// always start Circle mode at same angle
circle_angle = 0;
// We must be heading to a new WP, so XTrack must be 0
crosstrack_error = 0;
// Will be set by new command
target_bearing = 0;
// Will be set by new command
wp_distance = 0;
// Will be set by new command, used by loiter
long_error = 0;
lat_error = 0;
// We want to by default pass WPs
slow_wp = false;
// make sure we stick to Nav yaw on takeoff
auto_yaw = nav_yaw;
// revert to smaller radius set in params
waypoint_radius = g.waypoint_radius;
}
/*
* reset all I integrators
*/
static void reset_I_all(void)
{
reset_rate_I();
reset_stability_I();
reset_wind_I();
reset_throttle_I();
reset_optflow_I();
// This is the only place we reset Yaw
g.pi_stabilize_yaw.reset_I();
}
static void reset_rate_I()
{
g.pid_rate_roll.reset_I();
g.pid_rate_pitch.reset_I();
g.pid_rate_yaw.reset_I();
}
static void reset_optflow_I(void)
{
g.pid_optflow_roll.reset_I();
g.pid_optflow_pitch.reset_I();
of_roll = 0;
of_pitch = 0;
}
static void reset_wind_I(void)
{
// Wind Compensation
// this i is not currently being used, but we reset it anyway
// because someone may modify it and not realize it, causing a bug
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
g.pid_loiter_rate_lat.reset_I();
g.pid_loiter_rate_lon.reset_I();
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
}
static void reset_throttle_I(void)
{
// For Altitude Hold
g.pi_alt_hold.reset_I();
g.pid_throttle.reset_I();
}
static void reset_stability_I(void)
{
// Used to balance a quad
// This only needs to be reset during Auto-leveling in flight
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
}
/*************************************************************
* throttle control
****************************************************************/
/* Depricated
*
* static long
* //get_nav_yaw_offset(int yaw_input, int reset)
* {
* int32_t _yaw;
*
* if(reset == 0){
* // we are on the ground
* return ahrs.yaw_sensor;
*
* }else{
* // re-define nav_yaw if we have stick input
* if(yaw_input != 0){
* // set nav_yaw + or - the current location
* _yaw = yaw_input + ahrs.yaw_sensor;
* // we need to wrap our value so we can be 0 to 360 (*100)
* return wrap_360(_yaw);
* }else{
* // no stick input, lets not change nav_yaw
* return nav_yaw;
* }
* }
* }
*/
static int16_t get_angle_boost(int16_t value)
{
float temp = cos_pitch_x * cos_roll_x;
temp = constrain(temp, .75, 1.0);
return ((float)(value + 80) / temp) - (value + 80);
}
#if FRAME_CONFIG == HELI_FRAME
// heli_angle_boost - adds a boost depending on roll/pitch values
// equivalent of quad's angle_boost function
// throttle value should be 0 ~ 1000
static int16_t heli_get_angle_boost(int16_t throttle)
{
float angle_boost_factor = cos_pitch_x * cos_roll_x;
angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0);
int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0);
return throttle + throttle_above_mid*angle_boost_factor;
}
#endif // HELI_FRAME
#define NUM_G_SAMPLES 40
#if ACCEL_ALT_HOLD == 2
// z -14.4306 = going up
// z -6.4306 = going down
static int16_t get_z_damping()
{
int16_t output;
Z_integrator += get_world_Z_accel() - Z_offset;
output = Z_integrator * 3;
Z_integrator = Z_integrator * .8;
output = constrain(output, -100, 100);
return output;
}
float get_world_Z_accel()
{
accels_rot = ahrs.get_dcm_matrix() * imu.get_accel();
//Serial.printf("z %1.4f\n", accels_rot.z);
return accels_rot.z;
}
static void init_z_damper()
{
Z_offset = 0;
for (int16_t i = 0; i < NUM_G_SAMPLES; i++) {
delay(5);
read_AHRS();
Z_offset += get_world_Z_accel();
}
Z_offset /= (float)NUM_G_SAMPLES;
}
// Accelerometer Z dampening by Aurelio R. Ramos
// ---------------------------------------------
#elif ACCEL_ALT_HOLD == 1
// contains G and any other DC offset
static float estimatedAccelOffset = 0;
// state
static float synVelo = 0;
static float synPos = 0;
static float synPosFiltered = 0;
static float posError = 0;
static float prevSensedPos = 0;
// tuning for dead reckoning
static const float dt_50hz = 0.02;
static float synPosP = 10 * dt_50hz;
static float synPosI = 15 * dt_50hz;
static float synVeloP = 1.5 * dt_50hz;
static float maxVeloCorrection = 5 * dt_50hz;
static float maxSensedVelo = 1;
static float synPosFilter = 0.5;
// Z damping term.
static float fullDampP = 0.100;
float get_world_Z_accel()
{
accels_rot = ahrs.get_dcm_matrix() * imu.get_accel();
return accels_rot.z;
}
static void init_z_damper()
{
estimatedAccelOffset = 0;
for (int16_t i = 0; i < NUM_G_SAMPLES; i++) {
delay(5);
read_AHRS();
estimatedAccelOffset += get_world_Z_accel();
}
estimatedAccelOffset /= (float)NUM_G_SAMPLES;
}
float dead_reckon_Z(float sensedPos, float sensedAccel)
{
// the following algorithm synthesizes position and velocity from
// a noisy altitude and accelerometer data.
// synthesize uncorrected velocity by integrating acceleration
synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz;
// synthesize uncorrected position by integrating uncorrected velocity
synPos += synVelo * dt_50hz;
// filter synPos, the better this filter matches the filtering and dead time
// of the sensed position, the less the position estimate will lag.
synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter;
// calculate error against sensor position
posError = sensedPos - synPosFiltered;
// correct altitude
synPos += synPosP * posError;
// correct integrated velocity by posError
synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI;
// correct integrated velocity by the sensed position delta in a small proportion
// (i.e., the low frequency of the delta)
float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz;
synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP;
prevSensedPos = sensedPos;
return synVelo;
}
static int16_t get_z_damping()
{
float sensedAccel = get_world_Z_accel();
float sensedPos = current_loc.alt / 100.0;
float synVelo = dead_reckon_Z(sensedPos, sensedAccel);
return constrain(fullDampP * synVelo * (-1), -300, 300);
}
#else
static int16_t get_z_damping()
{
return 0;
}
static void init_z_damper()
{
}
#endif
// calculate modified roll/pitch depending upon optical flow calculated position
static int32_t
get_of_roll(int32_t input_roll)
{
#ifdef OPTFLOW_ENABLED
static float tot_x_cm = 0; // total distance from target
static uint32_t last_of_roll_update = 0;
int32_t new_roll = 0;
int32_t p,i,d;
// check if new optflow data available
if( optflow.last_update != last_of_roll_update) {
last_of_roll_update = optflow.last_update;
// add new distance moved
tot_x_cm += optflow.x_cm;
// only stop roll if caller isn't modifying roll
if( input_roll == 0 && current_loc.alt < 1500) {
p = g.pid_optflow_roll.get_p(-tot_x_cm);
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0);
new_roll = p+i+d;
}else{
g.pid_optflow_roll.reset_I();
tot_x_cm = 0;
p = 0; // for logging
i = 0;
d = 0;
}
// limit amount of change and maximum angle
of_roll = constrain(new_roll, (of_roll-20), (of_roll+20));
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
log_counter++;
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value);
}
}
#endif // LOGGING_ENABLED == ENABLED
}
// limit max angle
of_roll = constrain(of_roll, -1000, 1000);
return input_roll+of_roll;
#else
return input_roll;
#endif
}
static int32_t
get_of_pitch(int32_t input_pitch)
{
#ifdef OPTFLOW_ENABLED
static float tot_y_cm = 0; // total distance from target
static uint32_t last_of_pitch_update = 0;
int32_t new_pitch = 0;
int32_t p,i,d;
// check if new optflow data available
if( optflow.last_update != last_of_pitch_update ) {
last_of_pitch_update = optflow.last_update;
// add new distance moved
tot_y_cm += optflow.y_cm;
// only stop roll if caller isn't modifying pitch
if( input_pitch == 0 && current_loc.alt < 1500 ) {
p = g.pid_optflow_pitch.get_p(tot_y_cm);
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0);
new_pitch = p + i + d;
}else{
tot_y_cm = 0;
g.pid_optflow_pitch.reset_I();
p = 0; // for logging
i = 0;
d = 0;
}
// limit amount of change
of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20));
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
log_counter++;
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value);
}
}
#endif // LOGGING_ENABLED == ENABLED
}
// limit max angle
of_pitch = constrain(of_pitch, -1000, 1000);
return input_pitch+of_pitch;
#else
return input_pitch;
#endif
}