mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-06 16:08:28 -04:00
91ec4e56d5
this ensures motors are armed after safety is pressed, and also gives print out of channel inputs and outputs on USB console for debug purposes Pair-Programmed-With: Randy Mackay <rmackay9@yahoo.com>
498 lines
13 KiB
Plaintext
498 lines
13 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
|
|
#define WITH_ESC_CALIB
|
|
#endif
|
|
|
|
// Functions called from the setup menu
|
|
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
|
|
#ifdef WITH_ESC_CALIB
|
|
static int8_t esc_calib (uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
|
|
// Command/function table for the setup menu
|
|
const struct Menu::command setup_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"reset", setup_factory},
|
|
{"show", setup_show},
|
|
#ifdef WITH_ESC_CALIB
|
|
{"esc_calib", esc_calib},
|
|
#endif
|
|
};
|
|
|
|
// Create the setup menu object.
|
|
MENU(setup_menu, "setup", setup_menu_commands);
|
|
|
|
// Called from the top-level menu to run the setup menu.
|
|
static int8_t
|
|
setup_mode(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
// Give the user some guidance
|
|
cliSerial->printf_P(PSTR("Setup Mode\n\n\n"));
|
|
|
|
// Run the setup menu. When the menu exits, we will return to the main menu.
|
|
setup_menu.run();
|
|
return 0;
|
|
}
|
|
|
|
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
|
|
// Called by the setup menu 'factoryreset' command.
|
|
static int8_t
|
|
setup_factory(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int16_t c;
|
|
|
|
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n"));
|
|
|
|
do {
|
|
c = cliSerial->read();
|
|
} while (-1 == c);
|
|
|
|
if (('y' != c) && ('Y' != c))
|
|
return(-1);
|
|
|
|
AP_Param::erase_all();
|
|
cliSerial->printf_P(PSTR("\nReboot board"));
|
|
|
|
delay(1000);
|
|
|
|
for (;; ) {
|
|
}
|
|
// note, cannot actually return here
|
|
return(0);
|
|
}
|
|
|
|
// Print the current configuration.
|
|
// Called by the setup menu 'show' command.
|
|
static int8_t
|
|
setup_show(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
AP_Param *param;
|
|
ap_var_type type;
|
|
|
|
//If a parameter name is given as an argument to show, print only that parameter
|
|
if(argc>=2)
|
|
{
|
|
|
|
param=AP_Param::find(argv[1].str, &type);
|
|
|
|
if(!param)
|
|
{
|
|
cliSerial->printf_P(PSTR("Parameter not found: '%s'\n"), argv[1]);
|
|
return 0;
|
|
}
|
|
AP_Param::show(param, argv[1].str, type, cliSerial);
|
|
return 0;
|
|
}
|
|
|
|
// clear the area
|
|
print_blanks(8);
|
|
|
|
report_version();
|
|
report_radio();
|
|
report_frame();
|
|
report_batt_monitor();
|
|
report_flight_modes();
|
|
report_ins();
|
|
report_compass();
|
|
report_optflow();
|
|
|
|
AP_Param::show_all(cliSerial);
|
|
|
|
return(0);
|
|
}
|
|
|
|
#ifdef WITH_ESC_CALIB
|
|
#define PWM_CALIB_MIN 1000
|
|
#define PWM_CALIB_MAX 2000
|
|
#define PWM_HIGHEST_MAX 2200
|
|
#define PWM_LOWEST_MAX 1200
|
|
#define PWM_HIGHEST_MIN 1800
|
|
#define PWM_LOWEST_MIN 800
|
|
|
|
static int8_t
|
|
esc_calib(uint8_t argc,const Menu::arg *argv)
|
|
{
|
|
|
|
|
|
char c;
|
|
unsigned max_channels = 0;
|
|
uint32_t set_mask = 0;
|
|
|
|
uint16_t pwm_high = PWM_CALIB_MAX;
|
|
uint16_t pwm_low = PWM_CALIB_MIN;
|
|
|
|
|
|
if (argc < 2) {
|
|
cliSerial->printf_P(PSTR("Pls provide Channel Mask\n"
|
|
"\tusage: esc_calib 1010 - enables calibration for 2nd and 4th Motor\n"));
|
|
return(0);
|
|
}
|
|
|
|
|
|
|
|
set_mask = strtol (argv[1].str, NULL, 2);
|
|
if (set_mask == 0)
|
|
cliSerial->printf_P(PSTR("no channels chosen"));
|
|
//cliSerial->printf_P(PSTR("\n%d\n"),set_mask);
|
|
set_mask<<=1;
|
|
/* wait 50 ms */
|
|
hal.scheduler->delay(50);
|
|
|
|
|
|
cliSerial->printf_P(PSTR("\nATTENTION, please remove or fix propellers before starting calibration!\n"
|
|
"\n"
|
|
"Make sure\n"
|
|
"\t - that the ESCs are not powered\n"
|
|
"\t - that safety is off\n"
|
|
"\t - that the controllers are stopped\n"
|
|
"\n"
|
|
"Do you want to start calibration now: y or n?\n"));
|
|
|
|
/* wait for user input */
|
|
while (1) {
|
|
c= cliSerial->read();
|
|
if (c == 'y' || c == 'Y') {
|
|
|
|
break;
|
|
|
|
} else if (c == 0x03 || c == 0x63 || c == 'q') {
|
|
cliSerial->printf_P(PSTR("ESC calibration exited\n"));
|
|
return(0);
|
|
|
|
} else if (c == 'n' || c == 'N') {
|
|
cliSerial->printf_P(PSTR("ESC calibration aborted\n"));
|
|
return(0);
|
|
|
|
}
|
|
|
|
/* rate limit to ~ 20 Hz */
|
|
hal.scheduler->delay(50);
|
|
}
|
|
|
|
|
|
/* get number of channels available on the device */
|
|
max_channels = AP_MOTORS_MAX_NUM_MOTORS;
|
|
|
|
/* tell IO/FMU that the system is armed (it will output values if safety is off) */
|
|
motors.armed(true);
|
|
|
|
|
|
cliSerial->printf_P(PSTR("Outputs armed\n"));
|
|
|
|
|
|
/* wait for user confirmation */
|
|
cliSerial->printf_P(PSTR("\nHigh PWM set: %d\n"
|
|
"\n"
|
|
"Connect battery now and hit c+ENTER after the ESCs confirm the first calibration step\n"
|
|
"\n"), pwm_high);
|
|
|
|
while (1) {
|
|
/* set max PWM */
|
|
for (unsigned i = 0; i < max_channels; i++) {
|
|
|
|
if (set_mask & 1<<i) {
|
|
motors.output_test(i, pwm_high);
|
|
}
|
|
}
|
|
c = cliSerial->read();
|
|
|
|
if (c == 'c') {
|
|
break;
|
|
|
|
} else if (c == 0x03 || c == 0x63 || c == 'q') {
|
|
cliSerial->printf_P(PSTR("ESC calibration exited\n"));
|
|
return(0);
|
|
}
|
|
|
|
/* rate limit to ~ 20 Hz */
|
|
hal.scheduler->delay(50);
|
|
}
|
|
|
|
cliSerial->printf_P(PSTR("Low PWM set: %d\n"
|
|
"\n"
|
|
"Hit c+Enter when finished\n"
|
|
"\n"), pwm_low);
|
|
|
|
while (1) {
|
|
|
|
/* set disarmed PWM */
|
|
for (unsigned i = 0; i < max_channels; i++) {
|
|
if (set_mask & 1<<i) {
|
|
motors.output_test(i, pwm_low);
|
|
}
|
|
}
|
|
c = cliSerial->read();
|
|
|
|
if (c == 'c') {
|
|
|
|
break;
|
|
|
|
} else if (c == 0x03 || c == 0x63 || c == 'q') {
|
|
cliSerial->printf_P(PSTR("ESC calibration exited\n"));
|
|
return(0);
|
|
}
|
|
|
|
/* rate limit to ~ 20 Hz */
|
|
hal.scheduler->delay(50);
|
|
}
|
|
|
|
/* disarm */
|
|
motors.armed(false);
|
|
|
|
cliSerial->printf_P(PSTR("Outputs disarmed\n"));
|
|
|
|
cliSerial->printf_P(PSTR("ESC calibration finished\n"));
|
|
|
|
return(0);
|
|
}
|
|
#endif // WITH_ESC_CALIB
|
|
|
|
|
|
/***************************************************************************/
|
|
// CLI reports
|
|
/***************************************************************************/
|
|
|
|
static void report_batt_monitor()
|
|
{
|
|
cliSerial->printf_P(PSTR("\nBatt Mon:\n"));
|
|
print_divider();
|
|
if (battery.monitoring() == AP_BATT_MONITOR_DISABLED) print_enabled(false);
|
|
if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_ONLY) cliSerial->printf_P(PSTR("volts"));
|
|
if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) cliSerial->printf_P(PSTR("volts and cur"));
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_frame()
|
|
{
|
|
cliSerial->printf_P(PSTR("Frame\n"));
|
|
print_divider();
|
|
|
|
#if FRAME_CONFIG == QUAD_FRAME
|
|
cliSerial->printf_P(PSTR("Quad frame\n"));
|
|
#elif FRAME_CONFIG == TRI_FRAME
|
|
cliSerial->printf_P(PSTR("TRI frame\n"));
|
|
#elif FRAME_CONFIG == HEXA_FRAME
|
|
cliSerial->printf_P(PSTR("Hexa frame\n"));
|
|
#elif FRAME_CONFIG == Y6_FRAME
|
|
cliSerial->printf_P(PSTR("Y6 frame\n"));
|
|
#elif FRAME_CONFIG == OCTA_FRAME
|
|
cliSerial->printf_P(PSTR("Octa frame\n"));
|
|
#elif FRAME_CONFIG == HELI_FRAME
|
|
cliSerial->printf_P(PSTR("Heli frame\n"));
|
|
#endif
|
|
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_radio()
|
|
{
|
|
cliSerial->printf_P(PSTR("Radio\n"));
|
|
print_divider();
|
|
// radio
|
|
print_radio_values();
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_ins()
|
|
{
|
|
cliSerial->printf_P(PSTR("INS\n"));
|
|
print_divider();
|
|
|
|
print_gyro_offsets();
|
|
print_accel_offsets_and_scaling();
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_flight_modes()
|
|
{
|
|
cliSerial->printf_P(PSTR("Flight modes\n"));
|
|
print_divider();
|
|
|
|
for(int16_t i = 0; i < 6; i++ ) {
|
|
print_switch(i, flight_modes[i], BIT_IS_SET(g.simple_modes, i));
|
|
}
|
|
print_blanks(2);
|
|
}
|
|
|
|
void report_optflow()
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
cliSerial->printf_P(PSTR("OptFlow\n"));
|
|
print_divider();
|
|
|
|
print_enabled(g.optflow_enabled);
|
|
|
|
print_blanks(2);
|
|
#endif // OPTFLOW == ENABLED
|
|
}
|
|
|
|
/***************************************************************************/
|
|
// CLI utilities
|
|
/***************************************************************************/
|
|
|
|
static void
|
|
print_radio_values()
|
|
{
|
|
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max);
|
|
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max);
|
|
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max);
|
|
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max);
|
|
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
|
|
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
|
|
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
|
|
cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
|
|
}
|
|
|
|
static void
|
|
print_switch(uint8_t p, uint8_t m, bool b)
|
|
{
|
|
cliSerial->printf_P(PSTR("Pos %d:\t"),p);
|
|
print_flight_mode(cliSerial, m);
|
|
cliSerial->printf_P(PSTR(",\t\tSimple: "));
|
|
if(b)
|
|
cliSerial->printf_P(PSTR("ON\n"));
|
|
else
|
|
cliSerial->printf_P(PSTR("OFF\n"));
|
|
}
|
|
|
|
static void
|
|
print_accel_offsets_and_scaling(void)
|
|
{
|
|
const Vector3f &accel_offsets = ins.get_accel_offsets();
|
|
const Vector3f &accel_scale = ins.get_accel_scale();
|
|
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\nA_scale: %4.2f, %4.2f, %4.2f\n"),
|
|
(float)accel_offsets.x, // Pitch
|
|
(float)accel_offsets.y, // Roll
|
|
(float)accel_offsets.z, // YAW
|
|
(float)accel_scale.x, // Pitch
|
|
(float)accel_scale.y, // Roll
|
|
(float)accel_scale.z); // YAW
|
|
}
|
|
|
|
static void
|
|
print_gyro_offsets(void)
|
|
{
|
|
const Vector3f &gyro_offsets = ins.get_gyro_offsets();
|
|
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"),
|
|
(float)gyro_offsets.x,
|
|
(float)gyro_offsets.y,
|
|
(float)gyro_offsets.z);
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
// report_compass - displays compass information. Also called by compassmot.pde
|
|
static void report_compass()
|
|
{
|
|
cliSerial->printf_P(PSTR("Compass\n"));
|
|
print_divider();
|
|
|
|
print_enabled(g.compass_enabled);
|
|
|
|
// mag declination
|
|
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"),
|
|
degrees(compass.get_declination()));
|
|
|
|
// mag offsets
|
|
Vector3f offsets;
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
offsets = compass.get_offsets(i);
|
|
// mag offsets
|
|
cliSerial->printf_P(PSTR("Mag%d off: %4.4f, %4.4f, %4.4f\n"),
|
|
(int)i,
|
|
offsets.x,
|
|
offsets.y,
|
|
offsets.z);
|
|
}
|
|
|
|
// motor compensation
|
|
cliSerial->print_P(PSTR("Motor Comp: "));
|
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) {
|
|
cliSerial->print_P(PSTR("Off\n"));
|
|
}else{
|
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) {
|
|
cliSerial->print_P(PSTR("Throttle"));
|
|
}
|
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) {
|
|
cliSerial->print_P(PSTR("Current"));
|
|
}
|
|
Vector3f motor_compensation;
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
motor_compensation = compass.get_motor_compensation(i);
|
|
cliSerial->printf_P(PSTR("\nComMot%d: %4.2f, %4.2f, %4.2f\n"),
|
|
(int)i,
|
|
motor_compensation.x,
|
|
motor_compensation.y,
|
|
motor_compensation.z);
|
|
}
|
|
}
|
|
print_blanks(1);
|
|
}
|
|
|
|
static void
|
|
print_blanks(int16_t num)
|
|
{
|
|
while(num > 0) {
|
|
num--;
|
|
cliSerial->println("");
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_divider(void)
|
|
{
|
|
for (int i = 0; i < 40; i++) {
|
|
cliSerial->print_P(PSTR("-"));
|
|
}
|
|
cliSerial->println();
|
|
}
|
|
|
|
static void print_enabled(bool b)
|
|
{
|
|
if(b)
|
|
cliSerial->print_P(PSTR("en"));
|
|
else
|
|
cliSerial->print_P(PSTR("dis"));
|
|
cliSerial->print_P(PSTR("abled\n"));
|
|
}
|
|
|
|
|
|
static void
|
|
init_esc()
|
|
{
|
|
// reduce update rate to motors to 50Hz
|
|
motors.set_update_rate(50);
|
|
|
|
uint32_t last_print_ms = 0;
|
|
while(1) {
|
|
motors.armed(true);
|
|
motors.enable();
|
|
read_radio();
|
|
delay(10);
|
|
AP_Notify::flags.esc_calibration = true;
|
|
motors.throttle_pass_through();
|
|
|
|
uint32_t now = hal.scheduler->millis();
|
|
if (now - last_print_ms > 1000) {
|
|
hal.console->printf_P(PSTR("ESC cal input: %u %u %u %u output: %u %u %u %u\n"),
|
|
(unsigned)hal.rcin->read(0), (unsigned)hal.rcin->read(1),
|
|
(unsigned)hal.rcin->read(2), (unsigned)hal.rcin->read(3),
|
|
(unsigned)hal.rcout->read(0), (unsigned)hal.rcout->read(1),
|
|
(unsigned)hal.rcout->read(2), (unsigned)hal.rcout->read(3));
|
|
last_print_ms = now;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void report_version()
|
|
{
|
|
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version);
|
|
print_divider();
|
|
print_blanks(2);
|
|
}
|