mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 18:38:28 -04:00
3ec8857fbc
used to setup _pid_info for logging
97 lines
3.0 KiB
C++
97 lines
3.0 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/// @file AC_HELI_PID.cpp
|
|
/// @brief Generic PID algorithm
|
|
|
|
#include <AP_Math.h>
|
|
#include "AC_HELI_PID.h"
|
|
|
|
const AP_Param::GroupInfo AC_HELI_PID::var_info[] PROGMEM = {
|
|
// @Param: P
|
|
// @DisplayName: PID Proportional Gain
|
|
// @Description: P Gain which produces an output value that is proportional to the current error value
|
|
AP_GROUPINFO("P", 0, AC_HELI_PID, _kp, 0),
|
|
|
|
// @Param: I
|
|
// @DisplayName: PID Integral Gain
|
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
|
|
AP_GROUPINFO("I", 1, AC_HELI_PID, _ki, 0),
|
|
|
|
// @Param: D
|
|
// @DisplayName: PID Derivative Gain
|
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
|
|
AP_GROUPINFO("D", 2, AC_HELI_PID, _kd, 0),
|
|
|
|
// @Param: VFF
|
|
// @DisplayName: Velocity FF FeedForward Gain
|
|
// @Description: Velocity FF Gain which produces an output value that is proportional to the demanded input
|
|
AP_GROUPINFO("VFF", 4, AC_HELI_PID, _vff, 0),
|
|
|
|
// @Param: IMAX
|
|
// @DisplayName: PID Integral Maximum
|
|
// @Description: The maximum/minimum value that the I term can output
|
|
AP_GROUPINFO("IMAX", 5, AC_HELI_PID, _imax, 0),
|
|
|
|
// @Param: FILT_HZ
|
|
// @DisplayName: PID Input filter frequency in Hz
|
|
// @Description:
|
|
AP_GROUPINFO("FILT_HZ", 6, AC_HELI_PID, _filt_hz, AC_PID_FILT_HZ_DEFAULT),
|
|
|
|
// @Param: AFF
|
|
// @DisplayName: Acceleration FF FeedForward Gain
|
|
// @Description: Acceleration FF Gain which produces an output value that is proportional to the change in demanded input
|
|
AP_GROUPINFO("AFF", 7, AC_HELI_PID, _aff, 0),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/// Constructor for PID
|
|
AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt, float initial_vff) :
|
|
AC_PID(initial_p, initial_i, initial_d, initial_imax, initial_filt_hz, dt)
|
|
{
|
|
_vff = initial_vff;
|
|
_aff = 0;
|
|
_last_requested_rate = 0;
|
|
}
|
|
|
|
float AC_HELI_PID::get_vff(float requested_rate)
|
|
{
|
|
_pid_info.FF = (float)requested_rate * _vff;
|
|
return _pid_info.FF;
|
|
}
|
|
|
|
float AC_HELI_PID::get_aff(float requested_rate)
|
|
{
|
|
float derivative;
|
|
|
|
// calculate derivative
|
|
if (_dt > 0.0f) {
|
|
derivative = (requested_rate - _last_requested_rate) / _dt;
|
|
} else {
|
|
derivative = 0;
|
|
}
|
|
|
|
_pid_info.AFF = derivative * _aff;
|
|
_last_requested_rate = requested_rate;
|
|
return _pid_info.AFF;
|
|
}
|
|
|
|
// This is an integrator which tends to decay to zero naturally
|
|
// if the error is zero.
|
|
|
|
float AC_HELI_PID::get_leaky_i(float leak_rate)
|
|
{
|
|
if(!is_zero(_ki) && !is_zero(_dt)){
|
|
_integrator -= (float)_integrator * leak_rate;
|
|
_integrator += ((float)_input * _ki) * _dt;
|
|
if (_integrator < -_imax) {
|
|
_integrator = -_imax;
|
|
} else if (_integrator > _imax) {
|
|
_integrator = _imax;
|
|
}
|
|
|
|
_pid_info.I = _integrator;
|
|
return _integrator;
|
|
}
|
|
return 0;
|
|
}
|