mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 01:48:29 -04:00
670 lines
21 KiB
Plaintext
670 lines
21 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#define ARM_DELAY 20 // called at 10hz so 2 seconds
|
|
#define DISARM_DELAY 20 // called at 10hz so 2 seconds
|
|
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds
|
|
#define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds
|
|
|
|
static uint8_t auto_disarming_counter;
|
|
|
|
// arm_motors_check - checks for pilot input to arm or disarm the copter
|
|
// called at 10hz
|
|
static void arm_motors_check()
|
|
{
|
|
static int16_t arming_counter;
|
|
|
|
// ensure throttle is down
|
|
if (g.rc_3.control_in > 0) {
|
|
arming_counter = 0;
|
|
return;
|
|
}
|
|
|
|
int16_t tmp = g.rc_4.control_in;
|
|
|
|
// full right
|
|
if (tmp > 4000) {
|
|
|
|
// increase the arming counter to a maximum of 1 beyond the auto trim counter
|
|
if( arming_counter <= AUTO_TRIM_DELAY ) {
|
|
arming_counter++;
|
|
}
|
|
|
|
// arm the motors and configure for flight
|
|
if (arming_counter == ARM_DELAY && !motors.armed()) {
|
|
// run pre-arm-checks and display failures
|
|
pre_arm_checks(true);
|
|
if(ap.pre_arm_check && arm_checks(true,false)) {
|
|
if (!init_arm_motors()) {
|
|
// reset arming counter if arming fail
|
|
arming_counter = 0;
|
|
AP_Notify::flags.arming_failed = true;
|
|
}
|
|
}else{
|
|
// reset arming counter if pre-arm checks fail
|
|
arming_counter = 0;
|
|
AP_Notify::flags.arming_failed = true;
|
|
}
|
|
}
|
|
|
|
// arm the motors and configure for flight
|
|
if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) {
|
|
auto_trim_counter = 250;
|
|
// ensure auto-disarm doesn't trigger immediately
|
|
auto_disarming_counter = 0;
|
|
}
|
|
|
|
// full left
|
|
}else if (tmp < -4000) {
|
|
if (!manual_flight_mode(control_mode) && !ap.land_complete) {
|
|
arming_counter = 0;
|
|
return;
|
|
}
|
|
|
|
// increase the counter to a maximum of 1 beyond the disarm delay
|
|
if( arming_counter <= DISARM_DELAY ) {
|
|
arming_counter++;
|
|
}
|
|
|
|
// disarm the motors
|
|
if (arming_counter == DISARM_DELAY && motors.armed()) {
|
|
init_disarm_motors();
|
|
}
|
|
|
|
// Yaw is centered so reset arming counter
|
|
}else{
|
|
AP_Notify::flags.arming_failed = false;
|
|
arming_counter = 0;
|
|
}
|
|
}
|
|
|
|
// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds
|
|
// called at 1hz
|
|
static void auto_disarm_check()
|
|
{
|
|
// exit immediately if we are already disarmed or throttle is not zero
|
|
if (!motors.armed() || !ap.throttle_zero) {
|
|
auto_disarming_counter = 0;
|
|
return;
|
|
}
|
|
|
|
// allow auto disarm in manual flight modes or Loiter/AltHold if we're landed
|
|
if (manual_flight_mode(control_mode) || ap.land_complete) {
|
|
auto_disarming_counter++;
|
|
|
|
if(auto_disarming_counter >= AUTO_DISARMING_DELAY) {
|
|
init_disarm_motors();
|
|
auto_disarming_counter = 0;
|
|
}
|
|
}else{
|
|
auto_disarming_counter = 0;
|
|
}
|
|
}
|
|
|
|
// init_arm_motors - performs arming process including initialisation of barometer and gyros
|
|
// returns false in the unlikely case that arming fails (because of a gyro calibration failure)
|
|
static bool init_arm_motors()
|
|
{
|
|
// arming marker
|
|
// Flag used to track if we have armed the motors the first time.
|
|
// This is used to decide if we should run the ground_start routine
|
|
// which calibrates the IMU
|
|
static bool did_ground_start = false;
|
|
|
|
// disable cpu failsafe because initialising everything takes a while
|
|
failsafe_disable();
|
|
|
|
// disable inertial nav errors temporarily
|
|
inertial_nav.ignore_next_error();
|
|
|
|
// reset battery failsafe
|
|
set_failsafe_battery(false);
|
|
|
|
// notify that arming will occur (we do this early to give plenty of warning)
|
|
AP_Notify::flags.armed = true;
|
|
// call update_notify a few times to ensure the message gets out
|
|
for (uint8_t i=0; i<=10; i++) {
|
|
update_notify();
|
|
}
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS"));
|
|
#endif
|
|
|
|
// Remember Orientation
|
|
// --------------------
|
|
init_simple_bearing();
|
|
|
|
initial_armed_bearing = ahrs.yaw_sensor;
|
|
|
|
// Reset home position
|
|
// -------------------
|
|
if (ap.home_is_set) {
|
|
init_home();
|
|
calc_distance_and_bearing();
|
|
}
|
|
|
|
if(did_ground_start == false) {
|
|
startup_ground(true);
|
|
// final check that gyros calibrated successfully
|
|
if (((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) && !ins.gyro_calibrated_ok_all()) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Gyro calibration failed"));
|
|
AP_Notify::flags.armed = false;
|
|
failsafe_enable();
|
|
return false;
|
|
}
|
|
did_ground_start = true;
|
|
}
|
|
|
|
// fast baro calibration to reset ground pressure
|
|
init_barometer(false);
|
|
|
|
// reset inertial nav alt to zero
|
|
inertial_nav.set_altitude(0.0f);
|
|
|
|
// go back to normal AHRS gains
|
|
ahrs.set_fast_gains(false);
|
|
|
|
// enable gps velocity based centrefugal force compensation
|
|
ahrs.set_correct_centrifugal(true);
|
|
ahrs.set_armed(true);
|
|
|
|
// set hover throttle
|
|
motors.set_mid_throttle(g.throttle_mid);
|
|
|
|
#if SPRAYER == ENABLED
|
|
// turn off sprayer's test if on
|
|
sprayer.test_pump(false);
|
|
#endif
|
|
|
|
// short delay to allow reading of rc inputs
|
|
delay(30);
|
|
|
|
// enable output to motors
|
|
output_min();
|
|
|
|
// finally actually arm the motors
|
|
motors.armed(true);
|
|
|
|
// log arming to dataflash
|
|
Log_Write_Event(DATA_ARMED);
|
|
|
|
// log flight mode in case it was changed while vehicle was disarmed
|
|
Log_Write_Mode(control_mode);
|
|
|
|
// reenable failsafe
|
|
failsafe_enable();
|
|
|
|
// return success
|
|
return true;
|
|
}
|
|
|
|
// perform pre-arm checks and set ap.pre_arm_check flag
|
|
static void pre_arm_checks(bool display_failure)
|
|
{
|
|
// exit immediately if we've already successfully performed the pre-arm check
|
|
if (ap.pre_arm_check) {
|
|
return;
|
|
}
|
|
|
|
// succeed if pre arm checks are disabled
|
|
if(g.arming_check == ARMING_CHECK_NONE) {
|
|
set_pre_arm_check(true);
|
|
set_pre_arm_rc_check(true);
|
|
return;
|
|
}
|
|
|
|
// pre-arm rc checks a prerequisite
|
|
pre_arm_rc_checks();
|
|
if(!ap.pre_arm_rc_check) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// check Baro
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
|
|
// barometer health check
|
|
if(!barometer.healthy()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Barometer not healthy"));
|
|
}
|
|
return;
|
|
}
|
|
// check Baro & inav alt are within 1m
|
|
if(fabs(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Altitude disparity"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// check Compass
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
|
|
// check the primary compass is healthy
|
|
if(!compass.healthy(0)) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// check compass learning is on or offsets have been set
|
|
if(!compass.configured()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// check for unreasonable compass offsets
|
|
Vector3f offsets = compass.get_offsets();
|
|
if(offsets.length() > COMPASS_OFFSETS_MAX) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// check for unreasonable mag field length
|
|
float mag_field = compass.get_field().length();
|
|
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
#if COMPASS_MAX_INSTANCES > 1
|
|
// check all compasses point in roughly same direction
|
|
if (compass.get_count() > 1) {
|
|
Vector3f prime_mag_vec = compass.get_field();
|
|
prime_mag_vec.normalize();
|
|
for(uint8_t i=0; i<compass.get_count(); i++) {
|
|
// get next compass
|
|
Vector3f mag_vec = compass.get_field(i);
|
|
mag_vec.normalize();
|
|
Vector3f vec_diff = mag_vec - prime_mag_vec;
|
|
if (vec_diff.length() > COMPASS_ACCEPTABLE_VECTOR_DIFF) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent compasses"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
// check GPS
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) {
|
|
// check gps is ok if required - note this same check is repeated again in arm_checks
|
|
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) {
|
|
return;
|
|
}
|
|
|
|
#if AC_FENCE == ENABLED
|
|
// check fence is initialised
|
|
if(!fence.pre_arm_check() || (((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) && !pre_arm_gps_checks(display_failure))) {
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// check INS
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
|
|
// check accelerometers have been calibrated
|
|
if(!ins.calibrated()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// check accels are healthy
|
|
if(!ins.get_accel_health_all()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accelerometers not healthy"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
#if INS_MAX_INSTANCES > 1
|
|
// check all accelerometers point in roughly same direction
|
|
if (ins.get_accel_count() > 1) {
|
|
const Vector3f &prime_accel_vec = ins.get_accel();
|
|
for(uint8_t i=0; i<ins.get_accel_count(); i++) {
|
|
// get next accel vector
|
|
const Vector3f &accel_vec = ins.get_accel(i);
|
|
Vector3f vec_diff = accel_vec - prime_accel_vec;
|
|
if (vec_diff.length() > PREARM_MAX_ACCEL_VECTOR_DIFF) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Accelerometers"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// check gyros are healthy
|
|
if(!ins.get_gyro_health_all()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Gyros not healthy"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
#if INS_MAX_INSTANCES > 1
|
|
// check all gyros are consistent
|
|
if (ins.get_gyro_count() > 1) {
|
|
for(uint8_t i=0; i<ins.get_gyro_count(); i++) {
|
|
// get rotation rate difference between gyro #i and primary gyro
|
|
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
|
|
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Gyros"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
|
|
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
|
|
// check board voltage
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
|
|
if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// check various parameter values
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
|
|
|
|
// ensure ch7 and ch8 have different functions
|
|
if ((g.ch7_option != 0 || g.ch8_option != 0) && g.ch7_option == g.ch8_option) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Ch7&Ch8 Option cannot be same"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// failsafe parameter checks
|
|
if (g.failsafe_throttle) {
|
|
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
|
|
if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// lean angle parameter check
|
|
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// acro balance parameter check
|
|
if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH"));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// if we've gotten this far then pre arm checks have completed
|
|
set_pre_arm_check(true);
|
|
}
|
|
|
|
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
|
|
static void pre_arm_rc_checks()
|
|
{
|
|
// exit immediately if we've already successfully performed the pre-arm rc check
|
|
if( ap.pre_arm_rc_check ) {
|
|
return;
|
|
}
|
|
|
|
// set rc-checks to success if RC checks are disabled
|
|
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) {
|
|
set_pre_arm_rc_check(true);
|
|
return;
|
|
}
|
|
|
|
// check if radio has been calibrated
|
|
if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) {
|
|
return;
|
|
}
|
|
|
|
// check channels 1 & 2 have min <= 1300 and max >= 1700
|
|
if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) {
|
|
return;
|
|
}
|
|
|
|
// check channels 3 & 4 have min <= 1300 and max >= 1700
|
|
if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) {
|
|
return;
|
|
}
|
|
|
|
// if we've gotten this far rc is ok
|
|
set_pre_arm_rc_check(true);
|
|
}
|
|
|
|
// performs pre_arm gps related checks and returns true if passed
|
|
static bool pre_arm_gps_checks(bool display_failure)
|
|
{
|
|
float speed_cms = inertial_nav.get_velocity().length(); // speed according to inertial nav in cm/s
|
|
|
|
// check GPS is not glitching
|
|
if (gps_glitch.glitching()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: GPS Glitch"));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ensure GPS is ok
|
|
if (!GPS_ok()) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Need 3D Fix"));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// check speed is below 50cm/s
|
|
if (speed_cms == 0 || speed_cms > PREARM_MAX_VELOCITY_CMS) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad Velocity"));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// warn about hdop separately - to prevent user confusion with no gps lock
|
|
if (gps.get_hdop() > g.gps_hdop_good) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP"));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// if we got here all must be ok
|
|
return true;
|
|
}
|
|
|
|
// arm_checks - perform final checks before arming
|
|
// always called just before arming. Return true if ok to arm
|
|
// has side-effect that logging is started
|
|
static bool arm_checks(bool display_failure, bool arming_from_gcs)
|
|
{
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// start dataflash
|
|
start_logging();
|
|
#endif
|
|
|
|
// always check if the current mode allows arming
|
|
if (!mode_allows_arming(control_mode, arming_from_gcs)) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Mode not armable"));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// always check if rotor is spinning on heli
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// heli specific arming check
|
|
if (!motors.allow_arming()){
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Rotor not spinning"));
|
|
}
|
|
return false;
|
|
}
|
|
#endif // HELI_FRAME
|
|
|
|
// succeed if arming checks are disabled
|
|
if (g.arming_check == ARMING_CHECK_NONE) {
|
|
return true;
|
|
}
|
|
|
|
// check throttle is down
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
|
|
if (g.rc_3.control_in > 0) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high"));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check Baro & inav alt are within 1m
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
|
|
if(fabs(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Altitude disparity"));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check gps is ok if required - note this same check is also done in pre-arm checks
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) {
|
|
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check parameters
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
|
|
// check throttle is above failsafe throttle
|
|
if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle below Failsafe"));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check lean angle
|
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
|
|
if (labs(ahrs.roll_sensor) > aparm.angle_max || labs(ahrs.pitch_sensor) > aparm.angle_max) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning"));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check if safety switch has been pushed
|
|
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
|
|
if (display_failure) {
|
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch"));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// if we've gotten this far all is ok
|
|
return true;
|
|
}
|
|
|
|
// init_disarm_motors - disarm motors
|
|
static void init_disarm_motors()
|
|
{
|
|
// return immediately if we are already disarmed
|
|
if (!motors.armed()) {
|
|
return;
|
|
}
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS"));
|
|
#endif
|
|
|
|
motors.armed(false);
|
|
|
|
// disable inertial nav errors temporarily
|
|
inertial_nav.ignore_next_error();
|
|
|
|
// save offsets if automatic offset learning is on
|
|
if (compass.learn_offsets_enabled()) {
|
|
compass.save_offsets();
|
|
}
|
|
|
|
g.throttle_cruise.save();
|
|
|
|
#if AUTOTUNE_ENABLED == ENABLED
|
|
// save auto tuned parameters
|
|
autotune_save_tuning_gains();
|
|
#endif
|
|
|
|
// we are not in the air
|
|
set_land_complete(true);
|
|
set_land_complete_maybe(true);
|
|
|
|
// reset the mission
|
|
mission.reset();
|
|
|
|
// setup fast AHRS gains to get right attitude
|
|
ahrs.set_fast_gains(true);
|
|
|
|
// log disarm to the dataflash
|
|
Log_Write_Event(DATA_DISARMED);
|
|
|
|
// suspend logging
|
|
if (!(g.log_bitmask & MASK_LOG_WHEN_DISARMED)) {
|
|
DataFlash.EnableWrites(false);
|
|
}
|
|
|
|
// disable gps velocity based centrefugal force compensation
|
|
ahrs.set_correct_centrifugal(false);
|
|
ahrs.set_armed(false);
|
|
}
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
static void
|
|
set_servos_4()
|
|
{
|
|
// check if we are performing the motor test
|
|
if (ap.motor_test) {
|
|
motor_test_output();
|
|
} else {
|
|
#if FRAME_CONFIG == TRI_FRAME
|
|
// To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors
|
|
g.rc_3.servo_out = min(g.rc_3.servo_out, 800);
|
|
#endif
|
|
motors.output();
|
|
}
|
|
}
|