ardupilot/libraries/AP_Motors/AP_MotorsMatrix.cpp

414 lines
15 KiB
C++

/*
* AP_MotorsMatrix.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include "AP_MotorsMatrix.h"
// Init
void AP_MotorsMatrix::Init()
{
int8_t i;
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// setup the motors
setup_motors();
// double check that opposite motor definitions are ok
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( opposite_motor[i] <= 0 || opposite_motor[i] >= AP_MOTORS_MAX_NUM_MOTORS || !motor_enabled[opposite_motor[i]] )
opposite_motor[i] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED;
}
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// set update rate to motors - a value in hertz
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz )
{
uint32_t fast_channel_mask = 0;
int8_t i;
// record requested speed
_speed_hz = speed_hz;
// check each enabled motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
// set-up fast channel mask
fast_channel_mask |= _BV(_motor_to_channel_map[i]); // add to fast channel map
}
}
// enable fast channels
_rc->SetFastOutputChannels(fast_channel_mask, _speed_hz);
}
// set frame orientation (normally + or X)
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation )
{
// return if nothing has changed
if( new_orientation == _frame_orientation ) {
return;
}
// call parent
AP_Motors::set_frame_orientation( new_orientation );
// setup the motors
setup_motors();
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsMatrix::enable()
{
int8_t i;
// enable output channels
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
_rc->enable_out(_motor_to_channel_map[i]);
}
}
}
// output_min - sends minimum values out to the motors
void AP_MotorsMatrix::output_min()
{
int8_t i;
// fill the motor_out[] array for HIL use and send minimum value to each motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] = _rc_throttle->radio_min;
_rc->OutputCh(_motor_to_channel_map[i], motor_out[i]);
}
}
}
// output_armed - sends commands to the motors
void AP_MotorsMatrix::output_armed()
{
int8_t i;
int16_t out_min = _rc_throttle->radio_min;
int16_t out_max = _rc_throttle->radio_max;
int16_t rc_yaw_constrained_pwm;
int16_t rc_yaw_excess;
int16_t upper_margin, lower_margin;
int16_t motor_adjustment = 0;
int16_t yaw_to_execute = 0;
// initialize reached_limit flag
_reached_limit = AP_MOTOR_NO_LIMITS_REACHED;
// Throttle is 0 to 1000 only
_rc_throttle->servo_out = constrain(_rc_throttle->servo_out, 0, _max_throttle);
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
// if we are not sending a throttle output, we cut the motors
if(_rc_throttle->servo_out == 0) {
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] = _rc_throttle->radio_min;
}
}
// if we have any roll, pitch or yaw input then it's breaching the limit
if( _rc_roll->pwm_out != 0 || _rc_pitch->pwm_out != 0 ) {
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT;
}
if( _rc_yaw->pwm_out != 0 ) {
_reached_limit |= AP_MOTOR_YAW_LIMIT;
}
} else { // non-zero throttle
out_min = _rc_throttle->radio_min + _min_throttle;
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
}else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
}else{
rc_yaw_constrained_pwm = _rc_yaw->pwm_out;
rc_yaw_excess = 0;
}
// initialise upper and lower margins
upper_margin = lower_margin = out_max - out_min;
// add roll, pitch, throttle and constrained yaw for each motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] = _rc_throttle->radio_out +
_rc_roll->pwm_out * _roll_factor[i] +
_rc_pitch->pwm_out * _pitch_factor[i] +
rc_yaw_constrained_pwm * _yaw_factor[i];
// calculate remaining room between fastest running motor and top of pwm range
if( out_max - motor_out[i] < upper_margin) {
upper_margin = out_max - motor_out[i];
}
// calculate remaining room between slowest running motor and bottom of pwm range
if( motor_out[i] - out_min < lower_margin ) {
lower_margin = motor_out[i] - out_min;
}
}
}
// if motors are running too fast and we have enough room below, lower overall throttle
if( upper_margin < 0 || lower_margin < 0 ) {
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
// if we have overflowed on the top, reduce but no more than to the mid point
if( upper_margin < 0 ) {
motor_adjustment = max(upper_margin, motor_adjustment);
}
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
if( lower_margin < 0 ) {
motor_adjustment = min(-lower_margin, motor_adjustment);
}
}
// move throttle up or down to to pull within tolerance
if( motor_adjustment != 0 ) {
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] += motor_adjustment;
}
}
// we haven't even been able to apply roll, pitch and minimal yaw without adjusting throttle so mark all limits as breached
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT;
}
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
if( rc_yaw_excess != 0 ) {
// try for everything
yaw_to_execute = rc_yaw_excess;
// loop through motors and reduce as necessary
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] && _yaw_factor[i] != 0 ) {
// calculate upper and lower margins for this motor
upper_margin = max(0,out_max - motor_out[i]);
lower_margin = max(0,motor_out[i] - out_min);
// motor is increasing, check upper limit
if( rc_yaw_excess > 0 && _yaw_factor[i] > 0 ) {
yaw_to_execute = min(yaw_to_execute, upper_margin);
}
// motor is decreasing, check lower limit
if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) {
yaw_to_execute = min(yaw_to_execute, lower_margin);
}
// motor is decreasing, check lower limit
if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) {
yaw_to_execute = max(yaw_to_execute, -lower_margin);
}
// motor is increasing, check upper limit
if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) {
yaw_to_execute = max(yaw_to_execute, -upper_margin);
}
}
}
// check yaw_to_execute is reasonable
if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) {
// add the additional yaw
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] += _yaw_factor[i] * yaw_to_execute;
}
}
}
// mark yaw limit reached if we didn't get everything we asked for
if( yaw_to_execute != rc_yaw_excess ) {
_reached_limit |= AP_MOTOR_YAW_LIMIT;
}
}
// adjust for throttle curve
if( _throttle_curve_enabled ) {
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] = _throttle_curve.get_y(motor_out[i]);
}
}
}
// clip motor output if required (shouldn't be)
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] = constrain(motor_out[i], out_min, out_max);
}
}
}
// send output to each motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
_rc->OutputCh(_motor_to_channel_map[i], motor_out[i]);
}
}
}
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix::output_disarmed()
{
if(_rc_throttle->control_in > 0) {
// we have pushed up the throttle
// remove safety for auto pilot
_auto_armed = true;
}
// Send minimum values to all motors
output_min();
}
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix::output_test()
{
int8_t min_order, max_order;
int8_t i,j;
// find min and max orders
min_order = test_order[0];
max_order = test_order[0];
for(i=1; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( test_order[i] < min_order )
min_order = test_order[i];
if( test_order[i] > max_order )
max_order = test_order[i];
}
// shut down all motors
output_min();
// first delay is longer
delay(4000);
// loop through all the possible orders spinning any motors that match that description
for( i=min_order; i<=max_order; i++ ) {
for( j=0; j<AP_MOTORS_MAX_NUM_MOTORS; j++ ) {
if( motor_enabled[j] && test_order[j] == i ) {
// turn on this motor and wait 1/3rd of a second
_rc->OutputCh(_motor_to_channel_map[j], _rc_throttle->radio_min + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[j], _rc_throttle->radio_min);
delay(2000);
}
}
}
// shut down all motors
output_min();
}
// add_motor
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, int8_t opposite_motor_num, int8_t testing_order)
{
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if( !motor_enabled[motor_num] ) {
motor_enabled[motor_num] = true;
_num_motors++;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor[motor_num] = roll_fac;
_pitch_factor[motor_num] = pitch_fac;
_yaw_factor[motor_num] = yaw_fac;
// set opposite motor after checking it's somewhat valid
if( opposite_motor_num == AP_MOTORS_MATRIX_MOTOR_UNDEFINED || (opposite_motor_num >=0 && opposite_motor_num < AP_MOTORS_MAX_NUM_MOTORS) ) {
opposite_motor[motor_num] = opposite_motor_num;
}else{
opposite_motor[motor_num] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED;
}
// set order that motor appears in test
if( testing_order == AP_MOTORS_MATRIX_ORDER_UNDEFINED ) {
test_order[motor_num] = motor_num;
}else{
test_order[motor_num] = testing_order;
}
}
}
// add_motor using just position and prop direction
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, int8_t direction, int8_t opposite_motor_num, int8_t testing_order)
{
// call raw motor set-up method
add_motor_raw(
motor_num,
cos(radians(angle_degrees + 90)), // roll factor
cos(radians(angle_degrees)), // pitch factor
(float)direction, // yaw factor
opposite_motor_num,
testing_order);
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
{
int8_t i;
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// if the motor was enabled decrement the number of motors
if( motor_enabled[motor_num] )
_num_motors--;
// disable the motor, set all factors to zero
motor_enabled[motor_num] = false;
_roll_factor[motor_num] = 0;
_pitch_factor[motor_num] = 0;
_yaw_factor[motor_num] = 0;
opposite_motor[motor_num] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED;
}
// if another motor has referred to this motor as it's opposite, remove that reference
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( opposite_motor[i] == motor_num )
opposite_motor[i] = AP_MOTORS_MATRIX_MOTOR_UNDEFINED;
}
}
// remove_all_motors - removes all motor definitions
void AP_MotorsMatrix::remove_all_motors()
{
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
remove_motor(i);
}
_num_motors = 0;
}