ardupilot/libraries/SITL/SIM_Aircraft.cpp

671 lines
21 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
parent class for aircraft simulators
*/
#include "SIM_Aircraft.h"
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#ifdef __CYGWIN__
#include <windows.h>
#include <time.h>
#include <Mmsystem.h>
#endif
#include <DataFlash/DataFlash.h>
#include <AP_Param/AP_Param.h>
namespace SITL {
/*
parent class for all simulator types
*/
Aircraft::Aircraft(const char *home_str, const char *frame_str) :
ground_level(0),
frame_height(0),
dcm(),
gyro(),
velocity_ef(),
mass(0),
accel_body(0, 0, -GRAVITY_MSS),
time_now_us(0),
gyro_noise(radians(0.1f)),
accel_noise(0.3),
rate_hz(1200),
autotest_dir(NULL),
frame(frame_str),
#ifdef __CYGWIN__
min_sleep_time(20000)
#else
min_sleep_time(5000)
#endif
{
// make the SIM_* variables available to simulator backends
sitl = (SITL *)AP_Param::find_object("SIM_");
parse_home(home_str, home, home_yaw);
location = home;
ground_level = home.alt*0.01;
dcm.from_euler(0, 0, radians(home_yaw));
set_speedup(1);
last_wall_time_us = get_wall_time_us();
frame_counter = 0;
terrain = (AP_Terrain *)AP_Param::find_object("TERRAIN_");
}
/*
parse a home string into a location and yaw
*/
bool Aircraft::parse_home(const char *home_str, Location &loc, float &yaw_degrees)
{
char *saveptr=NULL;
char *s = strdup(home_str);
if (!s) {
return false;
}
char *lat_s = strtok_r(s, ",", &saveptr);
if (!lat_s) {
free(s);
return false;
}
char *lon_s = strtok_r(NULL, ",", &saveptr);
if (!lon_s) {
free(s);
return false;
}
char *alt_s = strtok_r(NULL, ",", &saveptr);
if (!alt_s) {
free(s);
return false;
}
char *yaw_s = strtok_r(NULL, ",", &saveptr);
if (!yaw_s) {
free(s);
return false;
}
memset(&loc, 0, sizeof(loc));
loc.lat = strtof(lat_s, NULL) * 1.0e7;
loc.lng = strtof(lon_s, NULL) * 1.0e7;
loc.alt = strtof(alt_s, NULL) * 1.0e2;
yaw_degrees = strtof(yaw_s, NULL);
free(s);
return true;
}
/*
return true if we are on the ground
*/
bool Aircraft::on_ground(const Vector3f &pos)
{
float h1, h2;
if (sitl->terrain_enable && terrain &&
terrain->height_amsl(home, h1, false) &&
terrain->height_amsl(location, h2, false)) {
ground_height_difference = h2 - h1;
}
return (-pos.z) + home.alt*0.01f <= ground_level + frame_height + ground_height_difference;
}
/*
update location from position
*/
void Aircraft::update_position(void)
{
location = home;
location_offset(location, position.x, position.y);
location.alt = home.alt - position.z*100.0f;
// we only advance time if it hasn't been advanced already by the
// backend
if (last_time_us == time_now_us) {
time_now_us += frame_time_us;
}
last_time_us = time_now_us;
if (use_time_sync) {
sync_frame_time();
}
#if 0
// logging of raw sitl data
Vector3f accel_ef = dcm * accel_body;
DataFlash_Class::instance()->Log_Write("SITL", "TimeUS,VN,VE,VD,AN,AE,AD,PN,PE,PD", "Qfffffffff",
AP_HAL::micros64(),
velocity_ef.x, velocity_ef.y, velocity_ef.z,
accel_ef.x, accel_ef.y, accel_ef.z,
position.x, position.y, position.z);
#endif
}
/*
update body magnetic field from position and rotation
*/
void Aircraft::update_mag_field_bf()
{
// get the magnetic field intensity and orientation
float intensity;
float declination;
float inclination;
get_mag_field_ef(location.lat*1e-7f,location.lng*1e-7f,intensity,declination,inclination);
// create a field vector and rotate to the required orientation
Vector3f mag_ef(1e3f * intensity, 0, 0);
Matrix3f R;
R.from_euler(0, -ToRad(inclination), ToRad(declination));
mag_ef = R * mag_ef;
// calculate frame height above ground
float frame_height_agl = fmaxf((-position.z) + home.alt*0.01f - ground_level, 0.0f);
// calculate scaling factor that varies from 1 at ground level to 1/8 at sitl->mag_anomaly_hgt
// Assume magnetic anomaly strength scales with 1/R**3
float anomaly_scaler = (sitl->mag_anomaly_hgt / (frame_height_agl + sitl->mag_anomaly_hgt));
anomaly_scaler = anomaly_scaler * anomaly_scaler * anomaly_scaler;
// add scaled anomaly to earth field
mag_ef += sitl->mag_anomaly_ned.get() * anomaly_scaler;
// Rotate into body frame
mag_bf = dcm.transposed() * mag_ef;
// add motor interference
mag_bf += sitl->mag_mot.get() * battery_current;
}
/* advance time by deltat in seconds */
void Aircraft::time_advance(float deltat)
{
time_now_us += deltat * 1.0e6f;
}
/* setup the frame step time */
void Aircraft::setup_frame_time(float new_rate, float new_speedup)
{
rate_hz = new_rate;
target_speedup = new_speedup;
frame_time_us = 1.0e6f/rate_hz;
scaled_frame_time_us = frame_time_us/target_speedup;
last_wall_time_us = get_wall_time_us();
achieved_rate_hz = rate_hz;
}
/* adjust frame_time calculation */
void Aircraft::adjust_frame_time(float new_rate)
{
if (rate_hz != new_rate) {
rate_hz = new_rate;
frame_time_us = 1.0e6f/rate_hz;
scaled_frame_time_us = frame_time_us/target_speedup;
}
}
/*
try to synchronise simulation time with wall clock time, taking
into account desired speedup
This tries to take account of possible granularity of
get_wall_time_us() so it works reasonably well on windows
*/
void Aircraft::sync_frame_time(void)
{
frame_counter++;
uint64_t now = get_wall_time_us();
if (frame_counter >= 40 &&
now > last_wall_time_us) {
float rate = frame_counter * 1.0e6f/(now - last_wall_time_us);
achieved_rate_hz = (0.99f*achieved_rate_hz) + (0.01f*rate);
if (achieved_rate_hz < rate_hz * target_speedup) {
scaled_frame_time_us *= 0.999f;
} else {
scaled_frame_time_us /= 0.999f;
}
#if 0
::printf("achieved_rate_hz=%.3f rate=%.2f rate_hz=%.3f sft=%.1f\n",
(double)achieved_rate_hz,
(double)rate,
(double)rate_hz,
(double)scaled_frame_time_us);
#endif
uint32_t sleep_time = scaled_frame_time_us*frame_counter;
if (sleep_time > min_sleep_time) {
usleep(sleep_time);
}
last_wall_time_us = now;
frame_counter = 0;
}
}
/* add noise based on throttle level (from 0..1) */
void Aircraft::add_noise(float throttle)
{
gyro += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * gyro_noise * fabsf(throttle);
accel_body += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * accel_noise * fabsf(throttle);
}
/*
normal distribution random numbers
See
http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011
*/
double Aircraft::rand_normal(double mean, double stddev)
{
static double n2 = 0.0;
static int n2_cached = 0;
if (!n2_cached)
{
double x, y, r;
do
{
x = 2.0*rand()/RAND_MAX - 1;
y = 2.0*rand()/RAND_MAX - 1;
r = x*x + y*y;
}
while (is_zero(r) || r > 1.0);
{
double d = sqrt(-2.0*log(r)/r);
double n1 = x*d;
n2 = y*d;
double result = n1*stddev + mean;
n2_cached = 1;
return result;
}
}
else
{
n2_cached = 0;
return n2*stddev + mean;
}
}
/*
fill a sitl_fdm structure from the simulator state
*/
void Aircraft::fill_fdm(struct sitl_fdm &fdm)
{
if (use_smoothing) {
smooth_sensors();
}
fdm.timestamp_us = time_now_us;
fdm.latitude = location.lat * 1.0e-7;
fdm.longitude = location.lng * 1.0e-7;
fdm.altitude = location.alt * 1.0e-2;
fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x));
fdm.speedN = velocity_ef.x;
fdm.speedE = velocity_ef.y;
fdm.speedD = velocity_ef.z;
fdm.xAccel = accel_body.x;
fdm.yAccel = accel_body.y;
fdm.zAccel = accel_body.z;
fdm.rollRate = degrees(gyro.x);
fdm.pitchRate = degrees(gyro.y);
fdm.yawRate = degrees(gyro.z);
float r, p, y;
dcm.to_euler(&r, &p, &y);
fdm.rollDeg = degrees(r);
fdm.pitchDeg = degrees(p);
fdm.yawDeg = degrees(y);
fdm.airspeed = airspeed_pitot;
fdm.battery_voltage = battery_voltage;
fdm.battery_current = battery_current;
fdm.rpm1 = rpm1;
fdm.rpm2 = rpm2;
fdm.rcin_chan_count = rcin_chan_count;
memcpy(fdm.rcin, rcin, rcin_chan_count*sizeof(float));
fdm.bodyMagField = mag_bf;
if (smoothing.enabled) {
fdm.xAccel = smoothing.accel_body.x;
fdm.yAccel = smoothing.accel_body.y;
fdm.zAccel = smoothing.accel_body.z;
fdm.rollRate = degrees(smoothing.gyro.x);
fdm.pitchRate = degrees(smoothing.gyro.y);
fdm.yawRate = degrees(smoothing.gyro.z);
fdm.speedN = smoothing.velocity_ef.x;
fdm.speedE = smoothing.velocity_ef.y;
fdm.speedD = smoothing.velocity_ef.z;
fdm.latitude = smoothing.location.lat * 1.0e-7;
fdm.longitude = smoothing.location.lng * 1.0e-7;
fdm.altitude = smoothing.location.alt * 1.0e-2;
}
if (last_speedup != sitl->speedup && sitl->speedup > 0) {
set_speedup(sitl->speedup);
last_speedup = sitl->speedup;
}
}
uint64_t Aircraft::get_wall_time_us() const
{
#ifdef __CYGWIN__
static DWORD tPrev;
static uint64_t last_ret_us;
if (tPrev == 0) {
tPrev = timeGetTime();
return 0;
}
DWORD now = timeGetTime();
last_ret_us += (uint64_t)((now - tPrev)*1000UL);
tPrev = now;
return last_ret_us;
#else
struct timeval tp;
gettimeofday(&tp,NULL);
return tp.tv_sec*1.0e6 + tp.tv_usec;
#endif
}
/*
set simulation speedup
*/
void Aircraft::set_speedup(float speedup)
{
setup_frame_time(rate_hz, speedup);
}
/*
update the simulation attitude and relative position
*/
void Aircraft::update_dynamics(const Vector3f &rot_accel)
{
float delta_time = frame_time_us * 1.0e-6f;
// update rotational rates in body frame
gyro += rot_accel * delta_time;
gyro.x = constrain_float(gyro.x, -radians(2000), radians(2000));
gyro.y = constrain_float(gyro.y, -radians(2000), radians(2000));
gyro.z = constrain_float(gyro.z, -radians(2000), radians(2000));
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground(position) && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
Vector3f old_position = position;
position += velocity_ef * delta_time;
// velocity relative to air mass, in earth frame
velocity_air_ef = velocity_ef + wind_ef;
// velocity relative to airmass in body frame
velocity_air_bf = dcm.transposed() * velocity_air_ef;
// airspeed
airspeed = velocity_air_ef.length();
// airspeed as seen by a fwd pitot tube (limited to 120m/s)
airspeed_pitot = constrain_float(velocity_air_bf * Vector3f(1, 0, 0), 0, 120);
// constrain height to the ground
if (on_ground(position)) {
if (!on_ground(old_position) && AP_HAL::millis() - last_ground_contact_ms > 1000) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
last_ground_contact_ms = AP_HAL::millis();
}
position.z = -(ground_level + frame_height - home.alt*0.01f + ground_height_difference);
switch (ground_behavior) {
case GROUND_BEHAVIOR_NONE:
break;
case GROUND_BEHAVIOR_NO_MOVEMENT: {
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0, 0, y);
// no X or Y movement
velocity_ef.x = 0;
velocity_ef.y = 0;
if (velocity_ef.z > 0) {
velocity_ef.z = 0;
}
gyro.zero();
use_smoothing = true;
break;
}
case GROUND_BEHAVIOR_FWD_ONLY: {
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0, 0, y);
// only fwd movement
Vector3f v_bf = dcm.transposed() * velocity_ef;
v_bf.y = 0;
if (v_bf.x < 0) {
v_bf.x = 0;
}
velocity_ef = dcm * v_bf;
if (velocity_ef.z > 0) {
velocity_ef.z = 0;
}
gyro.zero();
use_smoothing = true;
break;
}
}
}
}
/*
update wind vector
*/
void Aircraft::update_wind(const struct sitl_input &input)
{
// wind vector in earth frame
wind_ef = Vector3f(cosf(radians(input.wind.direction)), sinf(radians(input.wind.direction)), 0) * input.wind.speed;
}
/*
calculate magnetic field intensity and orientation
*/
bool Aircraft::get_mag_field_ef(float latitude_deg, float longitude_deg, float &intensity_gauss, float &declination_deg, float &inclination_deg)
{
bool valid_input_data = true;
/* round down to nearest sampling resolution */
int min_lat = (int)(latitude_deg / SAMPLING_RES) * SAMPLING_RES;
int min_lon = (int)(longitude_deg / SAMPLING_RES) * SAMPLING_RES;
/* for the rare case of hitting the bounds exactly
* the rounding logic wouldn't fit, so enforce it.
*/
/* limit to table bounds - required for maxima even when table spans full globe range */
if (latitude_deg <= SAMPLING_MIN_LAT) {
min_lat = SAMPLING_MIN_LAT;
valid_input_data = false;
}
if (latitude_deg >= SAMPLING_MAX_LAT) {
min_lat = (int)(latitude_deg / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES;
valid_input_data = false;
}
if (longitude_deg <= SAMPLING_MIN_LON) {
min_lon = SAMPLING_MIN_LON;
valid_input_data = false;
}
if (longitude_deg >= SAMPLING_MAX_LON) {
min_lon = (int)(longitude_deg / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES;
valid_input_data = false;
}
/* find index of nearest low sampling point */
unsigned min_lat_index = (-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES;
unsigned min_lon_index = (-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES;
/* calculate intensity */
float data_sw = intensity_table[min_lat_index][min_lon_index];
float data_se = intensity_table[min_lat_index][min_lon_index + 1];;
float data_ne = intensity_table[min_lat_index + 1][min_lon_index + 1];
float data_nw = intensity_table[min_lat_index + 1][min_lon_index];
/* perform bilinear interpolation on the four grid corners */
float data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw;
float data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw;
intensity_gauss = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min;
/* calculate declination */
data_sw = declination_table[min_lat_index][min_lon_index];
data_se = declination_table[min_lat_index][min_lon_index + 1];;
data_ne = declination_table[min_lat_index + 1][min_lon_index + 1];
data_nw = declination_table[min_lat_index + 1][min_lon_index];
/* perform bilinear interpolation on the four grid corners */
data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw;
data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw;
declination_deg = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min;
/* calculate inclination */
data_sw = inclination_table[min_lat_index][min_lon_index];
data_se = inclination_table[min_lat_index][min_lon_index + 1];;
data_ne = inclination_table[min_lat_index + 1][min_lon_index + 1];
data_nw = inclination_table[min_lat_index + 1][min_lon_index];
/* perform bilinear interpolation on the four grid corners */
data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw;
data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw;
inclination_deg = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min;
return valid_input_data;
}
/*
smooth sensors for kinematic consistancy when we interact with the ground
*/
void Aircraft::smooth_sensors(void)
{
uint64_t now = time_now_us;
Vector3f delta_pos = position - smoothing.position;
if (smoothing.last_update_us == 0 || delta_pos.length() > 10) {
smoothing.position = position;
smoothing.rotation_b2e = dcm;
smoothing.accel_body = accel_body;
smoothing.velocity_ef = velocity_ef;
smoothing.gyro = gyro;
smoothing.last_update_us = now;
smoothing.location = location;
printf("Smoothing reset at %.3f\n", now * 1.0e-6f);
return;
}
float delta_time = (now - smoothing.last_update_us) * 1.0e-6f;
// calculate required accel to get us to desired position and velocity in the time_constant
const float time_constant = 0.1;
Vector3f dvel = (velocity_ef - smoothing.velocity_ef) + (delta_pos / time_constant);
Vector3f accel_e = dvel / time_constant + (dcm * accel_body + Vector3f(0,0,GRAVITY_MSS));
const float accel_limit = 14*GRAVITY_MSS;
accel_e.x = constrain_float(accel_e.x, -accel_limit, accel_limit);
accel_e.y = constrain_float(accel_e.y, -accel_limit, accel_limit);
accel_e.z = constrain_float(accel_e.z, -accel_limit, accel_limit);
smoothing.accel_body = smoothing.rotation_b2e.transposed() * (accel_e + Vector3f(0,0,-GRAVITY_MSS));
// calculate rotational rate to get us to desired attitude in time constant
Quaternion desired_q, current_q, error_q;
desired_q.from_rotation_matrix(dcm);
desired_q.normalize();
current_q.from_rotation_matrix(smoothing.rotation_b2e);
current_q.normalize();
error_q = desired_q / current_q;
error_q.normalize();
Vector3f angle_differential;
error_q.to_axis_angle(angle_differential);
smoothing.gyro = gyro + angle_differential / time_constant;
float R,P,Y;
smoothing.rotation_b2e.to_euler(&R,&P,&Y);
float R2,P2,Y2;
dcm.to_euler(&R2,&P2,&Y2);
#if 0
DataFlash_Class::instance()->Log_Write("SMOO", "TimeUS,AEx,AEy,AEz,DPx,DPy,DPz,R,P,Y,R2,P2,Y2",
"Qffffffffffff",
AP_HAL::micros64(),
degrees(angle_differential.x),
degrees(angle_differential.y),
degrees(angle_differential.z),
delta_pos.x, delta_pos.y, delta_pos.z,
degrees(R), degrees(P), degrees(Y),
degrees(R2), degrees(P2), degrees(Y2));
#endif
// integrate to get new attitude
smoothing.rotation_b2e.rotate(smoothing.gyro * delta_time);
smoothing.rotation_b2e.normalize();
// integrate to get new position
smoothing.velocity_ef += accel_e * delta_time;
smoothing.position += smoothing.velocity_ef * delta_time;
smoothing.location = home;
location_offset(smoothing.location, smoothing.position.x, smoothing.position.y);
smoothing.location.alt = home.alt - smoothing.position.z*100.0f;
smoothing.last_update_us = now;
smoothing.enabled = true;
}
} // namespace SITL