ardupilot/ArduCopterMega/motors_quad.pde
tridge60@gmail.com 7ae9a53d41 quad: fixed the clipping of PWM outputs
when we clip a motor output we need to decrease the opposite motor by
the same amount, otherwise we lose the ability to control the quad
when the servo outputs are extreme

Found using the quad HIL test. Thanks to Jani for testing this on a
real quad!

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2929 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-20 00:33:04 +00:00

178 lines
4.5 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == QUAD_FRAME
static void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = g.rc_1.pwm_out * .707;
pitch_out = g.rc_2.pwm_out * .707;
// left
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[CH_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
// right
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
}else{
roll_out = g.rc_1.pwm_out;
pitch_out = g.rc_2.pwm_out;
// left
motor_out[CH_1] = g.rc_3.radio_out - roll_out;
// right
motor_out[CH_2] = g.rc_3.radio_out + roll_out;
// front
motor_out[CH_3] = g.rc_3.radio_out + pitch_out;
// back
motor_out[CH_4] = g.rc_3.radio_out - pitch_out;
}
// Yaw input
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
/* We need to clip motor output at out_max. When cipping a motors
* output we also need to compensate for the instability by
* lowering the opposite motor by the same proportion. This
* ensures that we retain control when one or more of the motors
* is at its maximum output
*/
for (int i=CH_1; i<=CH_4; i++) {
if (motor_out[i] > out_max && motor_out[i] > out_min) {
/* note that i^1 is the 'opposite' motor for a quad */
motor_out[i^1] *= ((float)out_max - out_min) / (motor_out[i] - out_min);
motor_out[i] = out_max;
}
}
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
#if CUT_MOTORS == ENABLED
// Send commands to motors
if(g.rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
}else{
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
}
#else
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
#endif
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
}
static void output_motor_test()
{
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
if(g.frame_orientation == X_FRAME){
// 31
// 24
if(g.rc_1.control_in > 3000){
motor_out[CH_1] += 50;
motor_out[CH_4] += 50;
}
if(g.rc_1.control_in < -3000){
motor_out[CH_2] += 50;
motor_out[CH_3] += 50;
}
if(g.rc_2.control_in > 3000){
motor_out[CH_2] += 50;
motor_out[CH_4] += 50;
}
if(g.rc_2.control_in < -3000){
motor_out[CH_1] += 50;
motor_out[CH_3] += 50;
}
}else{
// 3
// 2 1
// 4
if(g.rc_1.control_in > 3000)
motor_out[CH_1] += 50;
if(g.rc_1.control_in < -3000)
motor_out[CH_2] += 50;
if(g.rc_2.control_in > 3000)
motor_out[CH_4] += 50;
if(g.rc_2.control_in < -3000)
motor_out[CH_3] += 50;
}
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
}
#endif