mirror of https://github.com/ArduPilot/ardupilot
229 lines
5.6 KiB
Plaintext
229 lines
5.6 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
//
|
|
// Unit tests for the AP_Math euler code
|
|
//
|
|
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Math.h>
|
|
|
|
FastSerialPort(Serial, 0);
|
|
|
|
#ifdef DESKTOP_BUILD
|
|
// all of this is needed to build with SITL
|
|
#include <DataFlash.h>
|
|
#include <APM_RC.h>
|
|
#include <GCS_MAVLink.h>
|
|
#include <Arduino_Mega_ISR_Registry.h>
|
|
#include <AP_PeriodicProcess.h>
|
|
#include <AP_ADC.h>
|
|
#include <AP_Baro.h>
|
|
#include <AP_Compass.h>
|
|
#include <AP_GPS.h>
|
|
Arduino_Mega_ISR_Registry isr_registry;
|
|
AP_Baro_BMP085_HIL barometer;
|
|
AP_Compass_HIL compass;
|
|
#endif
|
|
|
|
static float rad_diff(float rad1, float rad2)
|
|
{
|
|
float diff = rad1 - rad2;
|
|
if (diff > PI) {
|
|
diff -= 2*PI;
|
|
}
|
|
if (diff < -PI) {
|
|
diff += 2*PI;
|
|
}
|
|
return fabs(diff);
|
|
}
|
|
|
|
static void check_result(float roll, float pitch, float yaw,
|
|
float roll2, float pitch2, float yaw2)
|
|
{
|
|
if (isnan(roll2) ||
|
|
isnan(pitch2) ||
|
|
isnan(yaw2)) {
|
|
Serial.printf("NAN eulers roll=%f pitch=%f yaw=%f\n",
|
|
roll, pitch, yaw);
|
|
}
|
|
|
|
if (rad_diff(roll2,roll) > ToRad(179)) {
|
|
// reverse all 3
|
|
roll2 += fmod(roll2+PI, 2*PI);
|
|
pitch2 += fmod(pitch2+PI, 2*PI);
|
|
yaw2 += fmod(yaw2+PI, 2*PI);
|
|
}
|
|
|
|
if (rad_diff(roll2,roll) > 0.01 ||
|
|
rad_diff(pitch2, pitch) > 0.01 ||
|
|
rad_diff(yaw2, yaw) > 0.01) {
|
|
if (pitch >= PI/2 ||
|
|
pitch <= -PI/2 ||
|
|
ToDeg(rad_diff(pitch, PI/2)) < 1 ||
|
|
ToDeg(rad_diff(pitch, -PI/2)) < 1) {
|
|
// we expect breakdown at these poles
|
|
Serial.printf("breakdown eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n",
|
|
ToDeg(roll), ToDeg(roll2), ToDeg(pitch), ToDeg(pitch2), ToDeg(yaw), ToDeg(yaw2));
|
|
} else {
|
|
Serial.printf("incorrect eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n",
|
|
ToDeg(roll), ToDeg(roll2), ToDeg(pitch), ToDeg(pitch2), ToDeg(yaw), ToDeg(yaw2));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_euler(float roll, float pitch, float yaw)
|
|
{
|
|
Matrix3f m;
|
|
float roll2, pitch2, yaw2;
|
|
|
|
m.from_euler(roll, pitch, yaw);
|
|
m.to_euler(&roll2, &pitch2, &yaw2);
|
|
check_result(roll, pitch, yaw, roll2, pitch2, yaw2);
|
|
}
|
|
|
|
#define ARRAY_LENGTH(x) (sizeof((x))/sizeof((x)[0]))
|
|
|
|
static const float angles[] = { 0, PI/8, PI/4, PI/2, PI,
|
|
-PI/8, -PI/4, -PI/2, -PI};
|
|
|
|
void test_matrix_eulers(void)
|
|
{
|
|
uint8_t i, j, k;
|
|
uint8_t N = ARRAY_LENGTH(angles);
|
|
|
|
Serial.println("rotation matrix unit tests\n");
|
|
|
|
for (i=0; i<N; i++)
|
|
for (j=0; j<N; j++)
|
|
for (k=0; k<N; k++)
|
|
test_euler(angles[i], angles[j], angles[k]);
|
|
|
|
Serial.println("tests done\n");
|
|
}
|
|
|
|
static void test_quaternion(float roll, float pitch, float yaw)
|
|
{
|
|
Quaternion q;
|
|
float roll2, pitch2, yaw2;
|
|
|
|
q.from_euler(roll, pitch, yaw);
|
|
q.to_euler(&roll2, &pitch2, &yaw2);
|
|
check_result(roll, pitch, yaw, roll2, pitch2, yaw2);
|
|
}
|
|
|
|
void test_quaternion_eulers(void)
|
|
{
|
|
uint8_t i, j, k;
|
|
uint8_t N = ARRAY_LENGTH(angles);
|
|
|
|
Serial.println("quaternion unit tests\n");
|
|
|
|
test_quaternion(PI/4, 0, 0);
|
|
test_quaternion(0, PI/4, 0);
|
|
test_quaternion(0, 0, PI/4);
|
|
test_quaternion(-PI/4, 0, 0);
|
|
test_quaternion(0, -PI/4, 0);
|
|
test_quaternion(0, 0, -PI/4);
|
|
test_quaternion(-PI/4, 1, 1);
|
|
test_quaternion(1, -PI/4, 1);
|
|
test_quaternion(1, 1, -PI/4);
|
|
|
|
test_quaternion(ToRad(89), 0, 0.1);
|
|
test_quaternion(0, ToRad(89), 0.1);
|
|
test_quaternion(0.1, 0, ToRad(89));
|
|
|
|
test_quaternion(ToRad(91), 0, 0.1);
|
|
test_quaternion(0, ToRad(91), 0.1);
|
|
test_quaternion(0.1, 0, ToRad(91));
|
|
|
|
for (i=0; i<N; i++)
|
|
for (j=0; j<N; j++)
|
|
for (k=0; k<N; k++)
|
|
test_quaternion(angles[i], angles[j], angles[k]);
|
|
|
|
Serial.println("tests done\n");
|
|
}
|
|
|
|
|
|
static void test_conversion(float roll, float pitch, float yaw)
|
|
{
|
|
Quaternion q;
|
|
Matrix3f m, m2;
|
|
|
|
float roll2, pitch2, yaw2;
|
|
float roll3, pitch3, yaw3;
|
|
|
|
q.from_euler(roll, pitch, yaw);
|
|
q.to_euler(&roll2, &pitch2, &yaw2);
|
|
check_result(roll, pitch, yaw, roll2, pitch2, yaw2);
|
|
|
|
q.rotation_matrix(m);
|
|
m.to_euler(&roll2, &pitch2, &yaw2);
|
|
|
|
m2.from_euler(roll, pitch, yaw);
|
|
m2.to_euler(&roll3, &pitch3, &yaw3);
|
|
if (m.is_nan()) {
|
|
Serial.printf("NAN matrix roll=%f pitch=%f yaw=%f\n",
|
|
roll, pitch, yaw);
|
|
}
|
|
|
|
check_result(roll, pitch, yaw, roll2, pitch2, yaw2);
|
|
check_result(roll, pitch, yaw, roll3, pitch3, yaw3);
|
|
}
|
|
|
|
void test_conversions(void)
|
|
{
|
|
uint8_t i, j, k;
|
|
uint8_t N = ARRAY_LENGTH(angles);
|
|
|
|
Serial.println("matrix/quaternion tests\n");
|
|
|
|
test_conversion(1, 1.1, 1.2);
|
|
test_conversion(1, -1.1, 1.2);
|
|
test_conversion(1, -1.1, -1.2);
|
|
test_conversion(-1, 1.1, -1.2);
|
|
test_conversion(-1, 1.1, 1.2);
|
|
|
|
for (i=0; i<N; i++)
|
|
for (j=0; j<N; j++)
|
|
for (k=0; k<N; k++)
|
|
test_conversion(angles[i], angles[j], angles[k]);
|
|
|
|
Serial.println("tests done\n");
|
|
}
|
|
|
|
void test_frame_transforms(void)
|
|
{
|
|
Vector3f v, v2;
|
|
Quaternion q;
|
|
Matrix3f m;
|
|
|
|
Serial.println("frame transform tests\n");
|
|
|
|
q.from_euler(ToRad(90), 0, 0);
|
|
v2 = v = Vector3f(0, 0, 1);
|
|
q.earth_to_body(v2);
|
|
printf("%f %f %f\n", v2.x, v2.y, v2.z);
|
|
}
|
|
|
|
/*
|
|
euler angle tests
|
|
*/
|
|
void setup(void)
|
|
{
|
|
Serial.begin(115200);
|
|
Serial.println("euler unit tests\n");
|
|
|
|
test_conversion(0, PI, 0);
|
|
|
|
test_frame_transforms();
|
|
test_conversions();
|
|
test_quaternion_eulers();
|
|
test_matrix_eulers();
|
|
}
|
|
|
|
void
|
|
loop(void)
|
|
{
|
|
}
|