ardupilot/libraries/AP_RAMTRON/AP_RAMTRON.cpp
2020-05-11 16:01:17 +10:00

220 lines
6.6 KiB
C++

/*
driver for RAMTRON FRAM persistent memory devices. These are used
for parameter and waypoint storage on most FMUv1, FMUv2, FMUv3 and FMUv4
boards
*/
#include "AP_RAMTRON.h"
#include <AP_Math/crc.h>
#include <AP_Math/AP_Math.h>
extern const AP_HAL::HAL &hal;
// register numbers
static const uint8_t RAMTRON_RDID = 0x9f;
static const uint8_t RAMTRON_READ = 0x03;
static const uint8_t RAMTRON_WREN = 0x06;
static const uint8_t RAMTRON_WRITE = 0x02;
#define RAMTRON_RETRIES 10
#define RAMTRON_DELAY_MS 10
/*
list of supported devices. Thanks to NuttX ramtron driver
*/
const AP_RAMTRON::ramtron_id AP_RAMTRON::ramtron_ids[] = {
{ 0x21, 0x00, 16, 2, RDID_type::Cypress }, // FM25V01
{ 0x21, 0x08, 16, 2, RDID_type::Cypress }, // FM25V01A
{ 0x22, 0x00, 32, 2, RDID_type::Cypress }, // FM25V02
{ 0x22, 0x08, 32, 2, RDID_type::Cypress }, // FM25V02A
{ 0x22, 0x48, 32, 2, RDID_type::Cypress }, // FM25V02A - Extended Temperature Version
{ 0x22, 0x01, 32, 2, RDID_type::Cypress }, // FM25VN02
{ 0x23, 0x00, 64, 2, RDID_type::Cypress }, // FM25V05
{ 0x23, 0x01, 64, 2, RDID_type::Cypress }, // FM25VN05
{ 0x24, 0x00, 128, 3, RDID_type::Cypress }, // FM25V10
{ 0x24, 0x01, 128, 3, RDID_type::Cypress }, // FM25VN10
{ 0x25, 0x08, 256, 3, RDID_type::Cypress }, // FM25V20A
{ 0x26, 0x08, 512, 3, RDID_type::Cypress }, // CY15B104Q
{ 0x27, 0x03, 128, 3, RDID_type::Fujitsu }, // MB85RS1MT
{ 0x05, 0x09, 32, 2, RDID_type::Fujitsu }, // MB85RS256B
{ 0x24, 0x03, 16, 2, RDID_type::Fujitsu }, // MB85RS128TY
};
// initialise the driver
bool AP_RAMTRON::init(void)
{
dev = hal.spi->get_device("ramtron");
if (!dev) {
hal.console->printf("No RAMTRON device\n");
return false;
}
WITH_SEMAPHORE(dev->get_semaphore());
struct cypress_rdid {
uint8_t manufacturer[6];
uint8_t memory;
uint8_t id1;
uint8_t id2;
};
struct fujitsu_rdid {
uint8_t manufacturer[2];
uint8_t id1;
uint8_t id2;
};
uint8_t rdid[sizeof(cypress_rdid)];
if (!dev->read_registers(RAMTRON_RDID, rdid, sizeof(rdid))) {
return false;
}
for (uint8_t i = 0; i < ARRAY_SIZE(ramtron_ids); i++) {
if (ramtron_ids[i].rdid_type == RDID_type::Cypress) {
const cypress_rdid *cypress = (const cypress_rdid *)rdid;
if (ramtron_ids[i].id1 == cypress->id1 &&
ramtron_ids[i].id2 == cypress->id2) {
id = i;
break;
}
} else if (ramtron_ids[i].rdid_type == RDID_type::Fujitsu) {
const fujitsu_rdid *fujitsu = (const fujitsu_rdid *)rdid;
if (ramtron_ids[i].id1 == fujitsu->id1 &&
ramtron_ids[i].id2 == fujitsu->id2) {
id = i;
break;
}
}
}
if (id == UINT8_MAX) {
hal.console->printf("Unknown RAMTRON device\n");
return false;
}
return true;
}
/*
send a command and offset
*/
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset) const
{
if (ramtron_ids[id].addrlen == 3) {
uint8_t b[4] = { cmd, uint8_t((offset>>16)&0xFF), uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) };
dev->transfer(b, sizeof(b), nullptr, 0);
} else /* len 2 */ {
uint8_t b[3] = { cmd, uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) };
dev->transfer(b, sizeof(b), nullptr, 0);
}
}
// read from device
bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
{
// Don't allow reads outside of the FRAM memory.
// NOTE: The FRAM devices will wrap back to address 0x0000 if they read past
// the end of their internal memory, so while we'll get data back, it won't
// be what we expect.
if ((size > get_size()) ||
(offset > (get_size() - size))) {
return false;
}
const uint8_t maxread = 128;
while (size > maxread) {
if (!read(offset, buf, maxread)) {
return false;
}
offset += maxread;
buf += maxread;
size -= maxread;
}
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
if (r != 0) {
hal.scheduler->delay(RAMTRON_DELAY_MS);
}
/*
transfer each block twice and compare with a crc. This is to
prevent transient errors from causing parameter corruption
*/
{
WITH_SEMAPHORE(dev->get_semaphore());
dev->set_chip_select(true);
send_offset(RAMTRON_READ, offset);
dev->transfer(nullptr, 0, buf, size);
dev->set_chip_select(false);
}
uint32_t crc1 = crc_crc32(0, buf, size);
{
WITH_SEMAPHORE(dev->get_semaphore());
dev->set_chip_select(true);
send_offset(RAMTRON_READ, offset);
dev->transfer(nullptr, 0, buf, size);
dev->set_chip_select(false);
}
uint32_t crc2 = crc_crc32(0, buf, size);
if (crc1 == crc2) {
// all good
return true;
}
}
return false;
}
// write to device
bool AP_RAMTRON::write(uint32_t offset, const uint8_t *buf, uint32_t size)
{
// Don't allow writes outside of the FRAM memory.
// NOTE: The FRAM devices will wrap back to address 0x0000 if they write past
// the end of their internal memory, so we could accidentally overwrite the
// wrong memory location.
if ((size > get_size()) ||
(offset > (get_size() - size))) {
return false;
}
WITH_SEMAPHORE(dev->get_semaphore());
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
if (r != 0) {
hal.scheduler->delay(RAMTRON_DELAY_MS);
}
// we need to enable writes every time. The WREN bit is
// automatically reset on completion of the write call
dev->set_chip_select(true);
dev->transfer(&RAMTRON_WREN, 1, nullptr, 0);
dev->set_chip_select(false);
dev->set_chip_select(true);
send_offset(RAMTRON_WRITE, offset);
dev->transfer(buf, size, nullptr, 0);
dev->set_chip_select(false);
/*
verify first 32 bytes of every write using a crc
*/
uint8_t rbuf[32] {};
const uint8_t nverify = MIN(size, sizeof(rbuf));
uint32_t crc1 = crc_crc32(0, buf, nverify);
dev->set_chip_select(true);
send_offset(RAMTRON_READ, offset);
dev->transfer(nullptr, 0, rbuf, nverify);
dev->set_chip_select(false);
uint32_t crc2 = crc_crc32(0, rbuf, nverify);
if (crc1 == crc2) {
return true;
}
}
return false;
}