mirror of https://github.com/ArduPilot/ardupilot
AP_RAMTRON: resync for 4.0
This commit is contained in:
parent
0c7ce2bc26
commit
ac6f429e25
|
@ -5,33 +5,40 @@
|
|||
*/
|
||||
|
||||
#include "AP_RAMTRON.h"
|
||||
#include <AP_Math/crc.h>
|
||||
#include <AP_Math/AP_Math.h>
|
||||
|
||||
extern const AP_HAL::HAL &hal;
|
||||
|
||||
// register numbers
|
||||
#define RAMTRON_RDID 0x9f
|
||||
#define RAMTRON_READ 0x03
|
||||
#define RAMTRON_RDSR 0x05
|
||||
#define RAMTRON_WREN 0x06
|
||||
#define RAMTRON_WRITE 0x02
|
||||
static const uint8_t RAMTRON_RDID = 0x9f;
|
||||
static const uint8_t RAMTRON_READ = 0x03;
|
||||
static const uint8_t RAMTRON_WREN = 0x06;
|
||||
static const uint8_t RAMTRON_WRITE = 0x02;
|
||||
|
||||
#define RAMTRON_RETRIES 10
|
||||
#define RAMTRON_DELAY_MS 10
|
||||
|
||||
/*
|
||||
list of supported devices. Thanks to NuttX ramtron driver
|
||||
*/
|
||||
const AP_RAMTRON::ramtron_id AP_RAMTRON::ramtron_ids[] = {
|
||||
{ 0x21, 0x00, 16, 2}, // FM25V01
|
||||
{ 0x21, 0x08, 16, 2}, // FM25V01A
|
||||
{ 0x22, 0x00, 32, 2}, // FM25V02
|
||||
{ 0x22, 0x08, 32, 2}, // FM25V02A
|
||||
{ 0x22, 0x01, 32, 2}, // FM25VN02
|
||||
{ 0x23, 0x00, 64, 2}, // FM25V05
|
||||
{ 0x23, 0x01, 64, 2}, // FM25VN05
|
||||
{ 0x24, 0x00, 128, 3}, // FM25V10
|
||||
{ 0x24, 0x01, 128, 3}, // FM25VN10
|
||||
{ 0x25, 0x08, 256, 3}, // FM25V20A
|
||||
{ 0x26, 0x08, 512, 3}, // CY15B104Q
|
||||
{ 0x27, 0x03, 128, 3}, // MB85RS1MT
|
||||
{ 0x05, 0x09, 32, 3}, // B85RS256B
|
||||
{ 0x21, 0x00, 16, 2, RDID_type::Cypress }, // FM25V01
|
||||
{ 0x21, 0x08, 16, 2, RDID_type::Cypress }, // FM25V01A
|
||||
{ 0x22, 0x00, 32, 2, RDID_type::Cypress }, // FM25V02
|
||||
{ 0x22, 0x08, 32, 2, RDID_type::Cypress }, // FM25V02A
|
||||
{ 0x22, 0x48, 32, 2, RDID_type::Cypress }, // FM25V02A - Extended Temperature Version
|
||||
{ 0x22, 0x01, 32, 2, RDID_type::Cypress }, // FM25VN02
|
||||
{ 0x23, 0x00, 64, 2, RDID_type::Cypress }, // FM25V05
|
||||
{ 0x23, 0x01, 64, 2, RDID_type::Cypress }, // FM25VN05
|
||||
{ 0x24, 0x00, 128, 3, RDID_type::Cypress }, // FM25V10
|
||||
{ 0x24, 0x01, 128, 3, RDID_type::Cypress }, // FM25VN10
|
||||
{ 0x25, 0x08, 256, 3, RDID_type::Cypress }, // FM25V20A
|
||||
{ 0x26, 0x08, 512, 3, RDID_type::Cypress }, // CY15B104Q
|
||||
|
||||
{ 0x27, 0x03, 128, 3, RDID_type::Fujitsu }, // MB85RS1MT
|
||||
{ 0x05, 0x09, 32, 2, RDID_type::Fujitsu }, // MB85RS256B
|
||||
{ 0x24, 0x03, 16, 2, RDID_type::Fujitsu }, // MB85RS128TY
|
||||
};
|
||||
|
||||
// initialise the driver
|
||||
|
@ -39,36 +46,59 @@ bool AP_RAMTRON::init(void)
|
|||
{
|
||||
dev = hal.spi->get_device("ramtron");
|
||||
if (!dev) {
|
||||
hal.console->printf("No RAMTRON device\n");
|
||||
return false;
|
||||
}
|
||||
WITH_SEMAPHORE(dev->get_semaphore());
|
||||
|
||||
struct rdid {
|
||||
struct cypress_rdid {
|
||||
uint8_t manufacturer[6];
|
||||
uint8_t memory;
|
||||
uint8_t id1;
|
||||
uint8_t id2;
|
||||
} rdid;
|
||||
if (!dev->read_registers(RAMTRON_RDID, (uint8_t *)&rdid, sizeof(rdid))) {
|
||||
};
|
||||
struct fujitsu_rdid {
|
||||
uint8_t manufacturer[2];
|
||||
uint8_t id1;
|
||||
uint8_t id2;
|
||||
};
|
||||
|
||||
uint8_t rdid[sizeof(cypress_rdid)];
|
||||
|
||||
if (!dev->read_registers(RAMTRON_RDID, rdid, sizeof(rdid))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (uint8_t i=0; i<ARRAY_SIZE(ramtron_ids); i++) {
|
||||
if (ramtron_ids[i].id1 == rdid.id1 &&
|
||||
ramtron_ids[i].id2 == rdid.id2) {
|
||||
id = i;
|
||||
return true;
|
||||
for (uint8_t i = 0; i < ARRAY_SIZE(ramtron_ids); i++) {
|
||||
if (ramtron_ids[i].rdid_type == RDID_type::Cypress) {
|
||||
const cypress_rdid *cypress = (const cypress_rdid *)rdid;
|
||||
if (ramtron_ids[i].id1 == cypress->id1 &&
|
||||
ramtron_ids[i].id2 == cypress->id2) {
|
||||
id = i;
|
||||
break;
|
||||
}
|
||||
} else if (ramtron_ids[i].rdid_type == RDID_type::Fujitsu) {
|
||||
const fujitsu_rdid *fujitsu = (const fujitsu_rdid *)rdid;
|
||||
if (ramtron_ids[i].id1 == fujitsu->id1 &&
|
||||
ramtron_ids[i].id2 == fujitsu->id2) {
|
||||
id = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
hal.console->printf("Unknown RAMTRON manufacturer=%02x memory=%02x id1=%02x id2=%02x\n",
|
||||
rdid.manufacturer[0], rdid.memory, rdid.id1, rdid.id2);
|
||||
return false;
|
||||
|
||||
if (id == UINT8_MAX) {
|
||||
hal.console->printf("Unknown RAMTRON device\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
send a command and offset
|
||||
*/
|
||||
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset)
|
||||
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset) const
|
||||
{
|
||||
if (ramtron_ids[id].addrlen == 3) {
|
||||
uint8_t b[4] = { cmd, uint8_t((offset>>16)&0xFF), uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) };
|
||||
|
@ -82,6 +112,14 @@ void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset)
|
|||
// read from device
|
||||
bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
|
||||
{
|
||||
// Don't allow reads outside of the FRAM memory.
|
||||
// NOTE: The FRAM devices will wrap back to address 0x0000 if they read past
|
||||
// the end of their internal memory, so while we'll get data back, it won't
|
||||
// be what we expect.
|
||||
if ((size > get_size()) ||
|
||||
(offset > (get_size() - size))) {
|
||||
return false;
|
||||
}
|
||||
const uint8_t maxread = 128;
|
||||
while (size > maxread) {
|
||||
if (!read(offset, buf, maxread)) {
|
||||
|
@ -92,36 +130,90 @@ bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
|
|||
size -= maxread;
|
||||
}
|
||||
|
||||
WITH_SEMAPHORE(dev->get_semaphore());
|
||||
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
|
||||
if (r != 0) {
|
||||
hal.scheduler->delay(RAMTRON_DELAY_MS);
|
||||
}
|
||||
/*
|
||||
transfer each block twice and compare with a crc. This is to
|
||||
prevent transient errors from causing parameter corruption
|
||||
*/
|
||||
{
|
||||
WITH_SEMAPHORE(dev->get_semaphore());
|
||||
dev->set_chip_select(true);
|
||||
send_offset(RAMTRON_READ, offset);
|
||||
dev->transfer(nullptr, 0, buf, size);
|
||||
dev->set_chip_select(false);
|
||||
}
|
||||
|
||||
dev->set_chip_select(true);
|
||||
uint32_t crc1 = crc_crc32(0, buf, size);
|
||||
|
||||
send_offset(RAMTRON_READ, offset);
|
||||
|
||||
// get data
|
||||
dev->transfer(nullptr, 0, buf, size);
|
||||
{
|
||||
WITH_SEMAPHORE(dev->get_semaphore());
|
||||
dev->set_chip_select(true);
|
||||
send_offset(RAMTRON_READ, offset);
|
||||
dev->transfer(nullptr, 0, buf, size);
|
||||
dev->set_chip_select(false);
|
||||
}
|
||||
uint32_t crc2 = crc_crc32(0, buf, size);
|
||||
|
||||
dev->set_chip_select(false);
|
||||
if (crc1 == crc2) {
|
||||
// all good
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// write to device
|
||||
bool AP_RAMTRON::write(uint32_t offset, const uint8_t *buf, uint32_t size)
|
||||
{
|
||||
// Don't allow writes outside of the FRAM memory.
|
||||
// NOTE: The FRAM devices will wrap back to address 0x0000 if they write past
|
||||
// the end of their internal memory, so we could accidentally overwrite the
|
||||
// wrong memory location.
|
||||
if ((size > get_size()) ||
|
||||
(offset > (get_size() - size))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
WITH_SEMAPHORE(dev->get_semaphore());
|
||||
|
||||
// write enable
|
||||
uint8_t r = RAMTRON_WREN;
|
||||
dev->transfer(&r, 1, nullptr, 0);
|
||||
|
||||
dev->set_chip_select(true);
|
||||
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
|
||||
if (r != 0) {
|
||||
hal.scheduler->delay(RAMTRON_DELAY_MS);
|
||||
}
|
||||
|
||||
send_offset(RAMTRON_WRITE, offset);
|
||||
// we need to enable writes every time. The WREN bit is
|
||||
// automatically reset on completion of the write call
|
||||
dev->set_chip_select(true);
|
||||
dev->transfer(&RAMTRON_WREN, 1, nullptr, 0);
|
||||
dev->set_chip_select(false);
|
||||
|
||||
dev->transfer(buf, size, nullptr, 0);
|
||||
dev->set_chip_select(true);
|
||||
send_offset(RAMTRON_WRITE, offset);
|
||||
dev->transfer(buf, size, nullptr, 0);
|
||||
dev->set_chip_select(false);
|
||||
|
||||
dev->set_chip_select(false);
|
||||
/*
|
||||
verify first 32 bytes of every write using a crc
|
||||
*/
|
||||
uint8_t rbuf[32] {};
|
||||
const uint8_t nverify = MIN(size, sizeof(rbuf));
|
||||
uint32_t crc1 = crc_crc32(0, buf, nverify);
|
||||
|
||||
return true;
|
||||
dev->set_chip_select(true);
|
||||
send_offset(RAMTRON_READ, offset);
|
||||
dev->transfer(nullptr, 0, rbuf, nverify);
|
||||
dev->set_chip_select(false);
|
||||
|
||||
uint32_t crc2 = crc_crc32(0, rbuf, nverify);
|
||||
|
||||
if (crc1 == crc2) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -9,28 +9,41 @@
|
|||
class AP_RAMTRON {
|
||||
public:
|
||||
// initialise the driver
|
||||
// this will retry RAMTRON_RETRIES times until successful
|
||||
bool init(void);
|
||||
|
||||
// get size in bytes
|
||||
uint32_t get_size(void) const { return ramtron_ids[id].size_kbyte*1024UL; }
|
||||
uint32_t get_size(void) const { return (id == UINT8_MAX) ? 0 : ramtron_ids[id].size_kbyte * 1024UL; }
|
||||
|
||||
// read from device
|
||||
bool read(uint32_t offset, uint8_t *buf, uint32_t size);
|
||||
// this will retry RAMTRON_RETRIES times until two successive reads return the same data
|
||||
bool read(uint32_t offset, uint8_t * const buf, uint32_t size);
|
||||
|
||||
// write to device
|
||||
bool write(uint32_t offset, const uint8_t *buf, uint32_t size);
|
||||
bool write(uint32_t offset, uint8_t const * const buf, uint32_t size);
|
||||
|
||||
private:
|
||||
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev;
|
||||
|
||||
enum class RDID_type :uint8_t {
|
||||
Cypress,
|
||||
Fujitsu,
|
||||
};
|
||||
|
||||
struct ramtron_id {
|
||||
uint8_t id1, id2;
|
||||
uint8_t id1;
|
||||
uint8_t id2;
|
||||
uint16_t size_kbyte;
|
||||
uint8_t addrlen;
|
||||
RDID_type rdid_type;
|
||||
};
|
||||
static const struct ramtron_id ramtron_ids[];
|
||||
uint8_t id;
|
||||
uint8_t id = UINT8_MAX;
|
||||
|
||||
// send offset of transfer
|
||||
void send_offset(uint8_t cmd, uint32_t offset);
|
||||
// perform a single device initialisation
|
||||
bool _init(void);
|
||||
// perform a single device read
|
||||
bool _read(uint32_t offset, uint8_t * const buf, uint32_t size);
|
||||
|
||||
void send_offset(uint8_t cmd, uint32_t offset) const;
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue