ardupilot/libraries/AP_HAL_PX4/CAN.cpp

1114 lines
32 KiB
C++

/*
* Copyright (C) 2014 Pavel Kirienko <pavel.kirienko@gmail.com>
*
* With modifications for Ardupilot CAN driver
* Copyright (C) 2017 Eugene Shamaev
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/system.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#if HAL_WITH_UAVCAN
#include <cassert>
#include <cstring>
#include "CAN.h"
#include <nuttx/irq.h>
#include <unistd.h>
#include <drivers/drv_hrt.h>
#include <arch/board/board.h>
#include "Scheduler.h"
/*
* FOR INVESTIGATION:
* AP_HAL::micros64() was called for monotonic time counter
* pavel-kirienko: This will work as long as we don't need to synchronize the autopilot's own clock with an external
* time base, e.g. a GNSS time provided by an external GNSS receiver. Libuavcan's STM32 driver supports automatic time
* synchronization only if it has a dedicated hardware timer to work with.
*/
extern const AP_HAL::HAL& hal;
extern "C" {
static int can1_irq(const int irq, void*);
#if CAN_STM32_NUM_IFACES > 1
static int can2_irq(const int irq, void*);
#endif
}
using namespace PX4;
uint64_t clock::getUtcUSecFromCanInterrupt()
{
return AP_HAL::micros64();
}
uavcan::MonotonicTime clock::getMonotonic()
{
return uavcan::MonotonicTime::fromUSec(AP_HAL::micros64());
}
BusEvent::BusEvent(PX4CANManager& can_driver) :
_signal(0)
{
sem_init(&_wait_semaphore, 0, 0);
}
BusEvent::~BusEvent()
{
}
bool BusEvent::wait(uavcan::MonotonicDuration duration)
{
struct hrt_call wait_call;
irqstate_t irs = irqsave();
if (_signal) {
_signal = 0;
irqrestore(irs);
return true;
}
sem_init(&_wait_semaphore, 0, 0);
irqrestore(irs);
hrt_call_after(&wait_call, duration.toUSec(), (hrt_callout) signalFromCallOut, this);
sem_wait(&_wait_semaphore);
hrt_cancel(&wait_call);
irs = irqsave();
if (_signal) {
_signal = 0;
irqrestore(irs);
return true;
}
irqrestore(irs);
return false;
}
void BusEvent::signalFromCallOut(BusEvent *sem)
{
sem_post(&sem->_wait_semaphore);
}
void BusEvent::signalFromInterrupt()
{
_signal++;
sem_post(&_wait_semaphore);
}
static void handleTxInterrupt(uint8_t iface_index)
{
if (iface_index >= CAN_STM32_NUM_IFACES) {
return;
}
uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt();
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) {
if (hal.can_mgr[i] == nullptr) {
continue;
}
PX4CAN* iface = ((PX4CANManager*) hal.can_mgr[i])->getIface_out_to_in(iface_index);
if (iface != nullptr) {
iface->handleTxInterrupt(utc_usec);
}
}
}
static void handleRxInterrupt(uint8_t iface_index, uint8_t fifo_index)
{
if (iface_index >= CAN_STM32_NUM_IFACES) {
return;
}
uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt();
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) {
if (hal.can_mgr[i] == nullptr) {
continue;
}
PX4CAN* iface = ((PX4CANManager*) hal.can_mgr[i])->getIface_out_to_in(iface_index);
if (iface != nullptr) {
iface->handleRxInterrupt(fifo_index, utc_usec);
}
}
}
const uint32_t PX4CAN::TSR_ABRQx[PX4CAN::NumTxMailboxes] = { bxcan::TSR_ABRQ0, bxcan::TSR_ABRQ1, bxcan::TSR_ABRQ2 };
int PX4CAN::computeTimings(const uint32_t target_bitrate, Timings& out_timings)
{
if (target_bitrate < 1) {
return -ErrInvalidBitRate;
}
/*
* Hardware configuration
*/
const uint32_t pclk = STM32_PCLK1_FREQUENCY;
static const uint8_t MaxBS1 = 16;
static const uint8_t MaxBS2 = 8;
/*
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
* CAN in Automation, 2003
*
* According to the source, optimal quanta per bit are:
* Bitrate Optimal Maximum
* 1000 kbps 8 10
* 500 kbps 16 17
* 250 kbps 16 17
* 125 kbps 16 17
*/
const uint8_t max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
if (max_quanta_per_bit > (MaxBS1 + MaxBS2)) {
if (AP_BoardConfig_CAN::get_can_debug() >= 1) {
printf("PX4CAN::computeTimings max_quanta_per_bit problem\n\r");
}
}
static const uint16_t MaxSamplePointLocation = 900;
/*
* Computing (prescaler * BS):
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
* let:
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
* PRESCALER_BS = PRESCALER * BS
* ==>
* PRESCALER_BS = PCLK / BITRATE
*/
const uint32_t prescaler_bs = pclk / target_bitrate;
/*
* Searching for such prescaler value so that the number of quanta per bit is highest.
*/
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1);
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) {
if (bs1_bs2_sum <= 2) {
return -ErrInvalidBitRate; // No solution
}
bs1_bs2_sum--;
}
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
if ((prescaler < 1U) || (prescaler > 1024U)) {
return -ErrInvalidBitRate; // No solution
}
/*
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
* We need to find the values so that the sample point is as close as possible to the optimal value.
*
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
* {{bs2 -> (1 + bs1)/7}}
*
* Hence:
* bs2 = (1 + bs1) / 7
* bs1 = (7 * bs1_bs2_sum - 1) / 8
*
* Sample point location can be computed as follows:
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
*
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
* - With rounding to nearest
* - With rounding to zero
*/
struct BsPair {
uint8_t bs1;
uint8_t bs2;
uint16_t sample_point_permill;
BsPair() :
bs1(0), bs2(0), sample_point_permill(0)
{
}
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) :
bs1(arg_bs1), bs2(uint8_t(bs1_bs2_sum - bs1)), sample_point_permill(
uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
{
if (bs1_bs2_sum <= arg_bs1 && (AP_BoardConfig_CAN::get_can_debug() >= 1)) {
AP_HAL::panic("PX4CAN::computeTimings bs1_bs2_sum <= arg_bs1");
}
}
bool isValid() const
{
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2);
}
};
// First attempt with rounding to nearest
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
if (solution.sample_point_permill > MaxSamplePointLocation || !solution.isValid()) {
// Second attempt with rounding to zero
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8));
if (!solution.isValid())
{
printf("PX4CAN::computeTimings second solution invalid\n\r");
return -ErrLogic;
}
}
/*
* Final validation
*/
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) {
if (AP_BoardConfig_CAN::get_can_debug() >= 1) {
printf("PX4CAN::computeTimings target_bitrate error\n\r");
}
return -ErrLogic;
}
if (AP_BoardConfig_CAN::get_can_debug() >= 2) {
printf("PX4CAN::computeTimings Timings: quanta/bit: %d, sample point location: %.1f%%\n\r",
int(1 + solution.bs1 + solution.bs2), double(solution.sample_point_permill / 10.0));
}
out_timings.prescaler = uint16_t(prescaler - 1U);
out_timings.sjw = 0; // Which means one
out_timings.bs1 = uint8_t(solution.bs1 - 1);
out_timings.bs2 = uint8_t(solution.bs2 - 1);
return 0;
}
int16_t PX4CAN::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags)
{
if (frame.isErrorFrame() || frame.dlc > 8) {
return -ErrUnsupportedFrame;
}
/*
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because
* it is possible that the highest-priority frame between select() and send() could have been
* replaced with a lower priority one due to TX timeout. But we don't do this check because:
*
* - It is a highly unlikely scenario.
*
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new
* frame can only have higher priority, which doesn't break the logic.
*
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other
* issues to take care of before this one becomes relevant.
*
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive.
*/
CriticalSectionLocker lock;
/*
* Seeking for an empty slot
*/
uint8_t txmailbox = 0xFF;
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) {
txmailbox = 0;
} else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) {
txmailbox = 1;
} else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) {
txmailbox = 2;
} else {
return 0; // No transmission for you.
}
peak_tx_mailbox_index_ = uavcan::max(peak_tx_mailbox_index_, txmailbox); // Statistics
/*
* Setting up the mailbox
*/
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox];
if (frame.isExtended()) {
mb.TIR = ((frame.id & uavcan::CanFrame::MaskExtID) << 3) | bxcan::TIR_IDE;
} else {
mb.TIR = ((frame.id & uavcan::CanFrame::MaskStdID) << 21);
}
if (frame.isRemoteTransmissionRequest()) {
mb.TIR |= bxcan::TIR_RTR;
}
mb.TDTR = frame.dlc;
mb.TDHR = (uint32_t(frame.data[7]) << 24) | (uint32_t(frame.data[6]) << 16) | (uint32_t(frame.data[5]) << 8)
| (uint32_t(frame.data[4]) << 0);
mb.TDLR = (uint32_t(frame.data[3]) << 24) | (uint32_t(frame.data[2]) << 16) | (uint32_t(frame.data[1]) << 8)
| (uint32_t(frame.data[0]) << 0);
mb.TIR |= bxcan::TIR_TXRQ; // Go.
/*
* Registering the pending transmission so we can track its deadline and loopback it as needed
*/
TxItem& txi = pending_tx_[txmailbox];
txi.deadline = tx_deadline;
txi.frame = frame;
txi.loopback = (flags & uavcan::CanIOFlagLoopback) != 0;
txi.abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0;
txi.pending = true;
return 1;
}
int16_t PX4CAN::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic,
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags)
{
out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps
uint64_t utc_usec = 0;
{
CriticalSectionLocker lock;
if (rx_queue_.available() == 0) {
return 0;
}
CanRxItem frm;
rx_queue_.pop(frm);
out_frame = frm.frame;
utc_usec = frm.utc_usec;
out_flags = frm.flags;
}
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec);
return 1;
}
int16_t PX4CAN::configureFilters(const uavcan::CanFilterConfig* filter_configs, uint16_t num_configs)
{
if (num_configs > NumFilters) {
return -ErrFilterNumConfigs;
}
CriticalSectionLocker lock;
can_->FMR |= bxcan::FMR_FINIT;
// Slave (CAN2) gets half of the filters
can_->FMR = (can_->FMR & ~0x00003F00) | static_cast<uint32_t>(NumFilters) << 8;
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters
can_->FM1R = 0; // Identifier Mask mode
can_->FS1R = 0x7ffffff; // Single 32-bit for all
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters;
if (num_configs == 0) {
can_->FilterRegister[filter_start_index].FR1 = 0;
can_->FilterRegister[filter_start_index].FR2 = 0;
can_->FA1R = 1 << filter_start_index;
} else {
for (uint8_t i = 0; i < NumFilters; i++) {
if (i < num_configs) {
uint32_t id = 0;
uint32_t mask = 0;
const uavcan::CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) {
id = (cfg->id & uavcan::CanFrame::MaskExtID) << 3;
mask = (cfg->mask & uavcan::CanFrame::MaskExtID) << 3;
id |= bxcan::RIR_IDE;
} else {
id = (cfg->id & uavcan::CanFrame::MaskStdID) << 21;
mask = (cfg->mask & uavcan::CanFrame::MaskStdID) << 21;
}
if (cfg->id & uavcan::CanFrame::FlagRTR) {
id |= bxcan::RIR_RTR;
}
if (cfg->mask & uavcan::CanFrame::FlagEFF) {
mask |= bxcan::RIR_IDE;
}
if (cfg->mask & uavcan::CanFrame::FlagRTR) {
mask |= bxcan::RIR_RTR;
}
can_->FilterRegister[filter_start_index + i].FR1 = id;
can_->FilterRegister[filter_start_index + i].FR2 = mask;
can_->FA1R |= (1 << (filter_start_index + i));
} else {
can_->FA1R &= ~(1 << (filter_start_index + i));
}
}
}
can_->FMR &= ~bxcan::FMR_FINIT;
return 0;
}
bool PX4CAN::waitMsrINakBitStateChange(bool target_state)
{
const unsigned Timeout = 1000;
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) {
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0;
if (state == target_state) {
return true;
}
hal.scheduler->delay_microseconds(1000);
}
return false;
}
int PX4CAN::init(const uint32_t bitrate, const OperatingMode mode)
{
/* We need to silence the controller in the first order, otherwise it may interfere with the following operations. */
{
CriticalSectionLocker lock;
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode
can_->MCR |= bxcan::MCR_INRQ; // Request init
can_->IER = 0; // Disable CAN interrupts while initialization is in progress
}
if (!waitMsrINakBitStateChange(true)) {
if (AP_BoardConfig_CAN::get_can_debug() >= 1) {
printf("PX4CAN::init MSR INAK not set\n\r");
}
can_->MCR = bxcan::MCR_RESET;
return -ErrMsrInakNotSet;
}
/*
* Object state - CAN interrupts are disabled, so it's safe to modify it now
*/
rx_queue_.clear();
error_cnt_ = 0;
served_aborts_cnt_ = 0;
uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem());
peak_tx_mailbox_index_ = 0;
had_activity_ = false;
/*
* CAN timings for this bitrate
*/
Timings timings;
const int timings_res = computeTimings(bitrate, timings);
if (timings_res < 0) {
can_->MCR = bxcan::MCR_RESET;
return timings_res;
}
if (AP_BoardConfig_CAN::get_can_debug() >= 2) {
printf("PX4CAN::init Timings: presc=%u sjw=%u bs1=%u bs2=%u\n\r", unsigned(timings.prescaler),
unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
}
/*
* Hardware initialization (the hardware has already confirmed initialization mode, see above)
*/
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648
can_->BTR = ((timings.sjw & 3U) << 24) | ((timings.bs1 & 15U) << 16) | ((timings.bs2 & 7U) << 20)
| (timings.prescaler & 1023U) | ((mode == SilentMode) ? bxcan::BTR_SILM : 0);
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode
if (!waitMsrINakBitStateChange(false)) {
if (AP_BoardConfig_CAN::get_can_debug() >= 1) {
printf("PX4CAN::init MSR INAK not cleared\n\r");
}
can_->MCR = bxcan::MCR_RESET;
return -ErrMsrInakNotCleared;
}
/*
* Default filter configuration
*/
if (self_index_ == 0) {
can_->FMR |= bxcan::FMR_FINIT;
can_->FMR &= 0xFFFFC0F1;
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters
can_->FFA1R = 0; // All assigned to FIFO0 by default
can_->FM1R = 0; // Indentifier Mask mode
#if CAN_STM32_NUM_IFACES > 1
can_->FS1R = 0x7ffffff; // Single 32-bit for all
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything
can_->FilterRegister[0].FR2 = 0;
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything
can_->FilterRegister[NumFilters].FR2 = 0;
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface
#else
can_->FS1R = 0x1fff;
can_->FilterRegister[0].FR1 = 0;
can_->FilterRegister[0].FR2 = 0;
can_->FA1R = 1;
#endif
can_->FMR &= ~bxcan::FMR_FINIT;
}
return 0;
}
void PX4CAN::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t utc_usec)
{
if (mailbox_index < NumTxMailboxes) {
had_activity_ = had_activity_ || txok;
TxItem& txi = pending_tx_[mailbox_index];
if (txi.loopback && txok && txi.pending) {
CanRxItem frm;
frm.frame = txi.frame;
frm.flags = uavcan::CanIOFlagLoopback;
frm.utc_usec = utc_usec;
rx_queue_.push(frm);
}
txi.pending = false;
}
}
void PX4CAN::handleTxInterrupt(const uint64_t utc_usec)
{
// TXOK == false means that there was a hardware failure
if (can_->TSR & bxcan::TSR_RQCP0) {
const bool txok = can_->TSR & bxcan::TSR_TXOK0;
can_->TSR = bxcan::TSR_RQCP0;
handleTxMailboxInterrupt(0, txok, utc_usec);
}
if (can_->TSR & bxcan::TSR_RQCP1) {
const bool txok = can_->TSR & bxcan::TSR_TXOK1;
can_->TSR = bxcan::TSR_RQCP1;
handleTxMailboxInterrupt(1, txok, utc_usec);
}
if (can_->TSR & bxcan::TSR_RQCP2) {
const bool txok = can_->TSR & bxcan::TSR_TXOK2;
can_->TSR = bxcan::TSR_RQCP2;
handleTxMailboxInterrupt(2, txok, utc_usec);
}
if (update_event_ != nullptr) {
update_event_->signalFromInterrupt();
}
pollErrorFlagsFromISR();
}
void PX4CAN::handleRxInterrupt(uint8_t fifo_index, uint64_t utc_usec)
{
if (fifo_index >= 2) {
return;
}
volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R;
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) {
return;
}
/*
* Register overflow as a hardware error
*/
if ((*rfr_reg & bxcan::RFR_FOVR) != 0) {
error_cnt_++;
}
/*
* Read the frame contents
*/
uavcan::CanFrame frame;
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index];
if ((rf.RIR & bxcan::RIR_IDE) == 0) {
frame.id = uavcan::CanFrame::MaskStdID & (rf.RIR >> 21);
} else {
frame.id = uavcan::CanFrame::MaskExtID & (rf.RIR >> 3);
frame.id |= uavcan::CanFrame::FlagEFF;
}
if ((rf.RIR & bxcan::RIR_RTR) != 0) {
frame.id |= uavcan::CanFrame::FlagRTR;
}
frame.dlc = rf.RDTR & 15;
frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0));
frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8));
frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16));
frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24));
frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0));
frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8));
frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16));
frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24));
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read
/*
* Store with timeout into the FIFO buffer and signal update event
*/
CanRxItem frm;
frm.frame = frame;
frm.flags = 0;
frm.utc_usec = utc_usec;
rx_queue_.push(frm);
had_activity_ = true;
if (update_event_ != nullptr) {
update_event_->signalFromInterrupt();
}
pollErrorFlagsFromISR();
}
void PX4CAN::pollErrorFlagsFromISR()
{
const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT);
if (lec == 0) {
return;
}
can_->ESR = 0;
error_cnt_++;
// Serving abort requests
for (int i = 0; i < NumTxMailboxes; i++) { // Dear compiler, may I suggest you to unroll this loop please.
TxItem& txi = pending_tx_[i];
if (txi.pending && txi.abort_on_error) {
can_->TSR = TSR_ABRQx[i];
txi.pending = false;
served_aborts_cnt_++;
}
}
}
void PX4CAN::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time)
{
CriticalSectionLocker lock;
for (int i = 0; i < NumTxMailboxes; i++) {
TxItem& txi = pending_tx_[i];
if (txi.pending && txi.deadline < current_time) {
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission
txi.pending = false;
error_cnt_++;
}
}
}
bool PX4CAN::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const
{
/*
* We can accept more frames only if the following conditions are satisfied:
* - There is at least one TX mailbox free (obvious enough);
* - The priority of the new frame is higher than priority of all TX mailboxes.
*/
{
static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2;
const uint32_t tme = can_->TSR & TME;
if (tme == TME) { // All TX mailboxes are free (as in freedom).
return true;
}
if (tme == 0) { // All TX mailboxes are busy transmitting.
return false;
}
}
/*
* The second condition requires a critical section.
*/
CriticalSectionLocker lock;
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) {
if (pending_tx_[mbx].pending && !frame.priorityHigherThan(pending_tx_[mbx].frame)) {
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame.
}
}
return true; // This new frame will be added to a free TX mailbox in the next @ref send().
}
bool PX4CAN::isRxBufferEmpty() const
{
CriticalSectionLocker lock;
return rx_queue_.available() == 0;
}
uint64_t PX4CAN::getErrorCount() const
{
CriticalSectionLocker lock;
return error_cnt_;
//TODO: + rx_queue_.getOverflowCount();
}
unsigned PX4CAN::getRxQueueLength() const
{
CriticalSectionLocker lock;
return rx_queue_.available();
}
bool PX4CAN::hadActivity()
{
CriticalSectionLocker lock;
const bool ret = had_activity_;
had_activity_ = false;
return ret;
}
bool PX4CAN::begin(uint32_t bitrate)
{
if (init(bitrate, OperatingMode::NormalMode) == 0) {
bitrate_ = bitrate;
initialized_ = true;
} else {
initialized_ = false;
}
return initialized_;
}
void PX4CAN::reset()
{
if (initialized_ && bitrate_ != 0) {
init(bitrate_, OperatingMode::NormalMode);
}
}
bool PX4CAN::is_initialized()
{
return initialized_;
}
int32_t PX4CAN::available()
{
if (initialized_) {
return getRxQueueLength();
} else {
return -1;
}
}
int32_t PX4CAN::tx_pending()
{
if (!initialized_) {
return -1;
}
int32_t ret = 0;
CriticalSectionLocker lock;
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) {
if (pending_tx_[mbx].pending) {
ret++;
}
}
return ret;
}
/*
* CanDriver
*/
PX4CANManager::PX4CANManager() :
AP_HAL::CANManager(this), update_event_(*this), if0_(bxcan::Can[0], nullptr, 0, CAN_STM32_RX_QUEUE_SIZE), if1_(
bxcan::Can[1], nullptr, 1, CAN_STM32_RX_QUEUE_SIZE), initialized_(false)
{
uavcan::StaticAssert<(CAN_STM32_RX_QUEUE_SIZE <= PX4CAN::MaxRxQueueCapacity)>::check();
for(uint8_t i = 0; i < CAN_STM32_NUM_IFACES; i++) {
_ifaces_out_to_in[i] = UINT8_MAX;
}
}
uavcan::CanSelectMasks PX4CANManager::makeSelectMasks(const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces]) const
{
uavcan::CanSelectMasks msk;
for (uint8_t i = 0; i < _ifaces_num; i++) {
if (ifaces[i] == nullptr) {
continue;
}
if (!ifaces[i]->isRxBufferEmpty()) {
msk.read |= 1 << i;
}
if (pending_tx[i] != nullptr) {
if (ifaces[i]->canAcceptNewTxFrame(*pending_tx[i])) {
msk.write |= 1 << i;
}
}
}
return msk;
}
bool PX4CANManager::hasReadableInterfaces() const
{
bool ret = false;
for (uint8_t i = 0; i < _ifaces_num; i++) {
if (ifaces[i] != nullptr) {
ret |= !ifaces[i]->isRxBufferEmpty();
}
}
return ret;
}
int16_t PX4CANManager::select(uavcan::CanSelectMasks& inout_masks,
const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces], const uavcan::MonotonicTime blocking_deadline)
{
const uavcan::CanSelectMasks in_masks = inout_masks;
const uavcan::MonotonicTime time = clock::getMonotonic();
for (uint8_t i = 0; i < _ifaces_num; i++) {
if (ifaces[i] == nullptr) {
continue;
}
ifaces[i]->discardTimedOutTxMailboxes(time);
{
CriticalSectionLocker cs_locker;
ifaces[i]->pollErrorFlagsFromISR();
}
}
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events
if ((inout_masks.read & in_masks.read) != 0 || (inout_masks.write & in_masks.write) != 0) {
return 1;
}
(void) update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set
return 1; // Return value doesn't matter as long as it is non-negative
}
void PX4CANManager::initOnce(uint8_t can_number)
{
{
CriticalSectionLocker lock;
if (can_number == 0) {
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_CAN1EN);
}
#if CAN_STM32_NUM_IFACES > 1
if (can_number == 1) {
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_CAN2EN);
}
#endif
}
if (can_number == 0) {
#if defined(GPIO_CAN1_RX) && defined(GPIO_CAN1_TX)
stm32_configgpio(GPIO_CAN1_RX);
stm32_configgpio(GPIO_CAN1_TX);
#else
# error "Need to define GPIO_CAN1_RX/TX"
#endif
}
#if CAN_STM32_NUM_IFACES > 1
if (can_number == 1) {
#if defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX)
stm32_configgpio(GPIO_CAN2_RX | GPIO_PULLUP);
stm32_configgpio(GPIO_CAN2_TX);
#else
# error "Need to define GPIO_CAN2_RX/TX"
#endif // defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX)
}
#endif // CAN_STM32_NUM_IFACES > 1
/*
* IRQ
*/
if (can_number == 0) {
#if defined(STM32_IRQ_CAN1TX) && defined(STM32_IRQ_CAN1RX0) && defined(STM32_IRQ_CAN1RX1)
CAN_IRQ_ATTACH(STM32_IRQ_CAN1TX, can1_irq);
CAN_IRQ_ATTACH(STM32_IRQ_CAN1RX0, can1_irq);
CAN_IRQ_ATTACH(STM32_IRQ_CAN1RX1, can1_irq);
#else
# error "Need to define STM32_IRQ_CAN1TX/RX0/RX1"
#endif
}
#if CAN_STM32_NUM_IFACES > 1
if (can_number == 1) {
#if defined(STM32_IRQ_CAN2TX) && defined(STM32_IRQ_CAN2RX0) && defined(STM32_IRQ_CAN2RX1)
CAN_IRQ_ATTACH(STM32_IRQ_CAN2TX, can2_irq);
CAN_IRQ_ATTACH(STM32_IRQ_CAN2RX0, can2_irq);
CAN_IRQ_ATTACH(STM32_IRQ_CAN2RX1, can2_irq);
#else
# error "Need to define STM32_IRQ_CAN2TX/RX0/RX1"
#endif // defined(STM32_IRQ_CAN2TX) && defined(STM32_IRQ_CAN2RX0) && defined(STM32_IRQ_CAN2RX1)
}
#endif // CAN_STM32_NUM_IFACES > 1
}
int PX4CANManager::init(const uint32_t bitrate, const PX4CAN::OperatingMode mode, uint8_t can_number)
{
if (can_number >= CAN_STM32_NUM_IFACES) {
return -ErrNotImplemented;
}
static bool initialized_once[CAN_STM32_NUM_IFACES];
int res = 0;
if (AP_BoardConfig_CAN::get_can_debug(can_number) >= 2) {
printf("PX4CANManager::init Bitrate %lu mode %d bus %d\n\r", static_cast<unsigned long>(bitrate),
static_cast<int>(mode), static_cast<int>(can_number));
}
// If this outside physical interface was never inited - do this and add it to in/out conversion tables
if (!initialized_once[can_number]) {
initialized_once[can_number] = true;
_ifaces_num++;
_ifaces_out_to_in[can_number] = _ifaces_num - 1;
if (AP_BoardConfig_CAN::get_can_debug(can_number) >= 2) {
printf("PX4CANManager::init First initialization bus %d\n\r", static_cast<int>(can_number));
}
initOnce(can_number);
}
/*
* CAN1
*/
if (can_number == 0) {
if (AP_BoardConfig_CAN::get_can_debug(0) >= 2) {
printf("PX4CANManager::init Initing iface 0...\n\r");
}
ifaces[_ifaces_out_to_in[can_number]] = &if0_; // This link must be initialized first,
}
#if CAN_STM32_NUM_IFACES > 1
/*
* CAN2
*/
if (can_number == 1) {
if (AP_BoardConfig_CAN::get_can_debug(1) >= 2) {
printf("PX4CANManager::init Initing iface 1...\n\r");
}
ifaces[_ifaces_out_to_in[can_number]] = &if1_; // Same thing here.
}
#endif
ifaces[_ifaces_out_to_in[can_number]]->set_update_event(&update_event_);
res = ifaces[_ifaces_out_to_in[can_number]]->init(bitrate, mode);
if (res < 0) {
ifaces[_ifaces_out_to_in[can_number]] = nullptr;
return res;
}
if (AP_BoardConfig_CAN::get_can_debug(can_number) >= 2) {
printf("PX4CANManager::init CAN drv init OK, res = %d\n\r", res);
}
return res;
}
PX4CAN* PX4CANManager::getIface(uint8_t iface_index)
{
if (iface_index < _ifaces_num) {
return ifaces[iface_index];
}
return nullptr;
}
PX4CAN* PX4CANManager::getIface_out_to_in(uint8_t iface_index)
{
// Find which internal interface corresponds to required outside physical interface
if (iface_index < CAN_STM32_NUM_IFACES) {
if (_ifaces_out_to_in[iface_index] != UINT8_MAX) {
return ifaces[_ifaces_out_to_in[iface_index]];
}
}
return nullptr;
}
bool PX4CANManager::hadActivity()
{
bool ret = false;
// Go through all interfaces that are present in this manager
for (uint8_t i = 0; i < _ifaces_num; i++)
{
if (ifaces[i] != nullptr) {
ret |= ifaces[i]->hadActivity();
}
}
return ret;
}
bool PX4CANManager::begin(uint32_t bitrate, uint8_t can_number)
{
// Try to init outside physical interface 'can_number'
if (init(bitrate, PX4CAN::OperatingMode::NormalMode, can_number) >= 0) {
return true;
}
return false;
}
bool PX4CANManager::is_initialized()
{
return initialized_;
}
void PX4CANManager::initialized(bool val)
{
initialized_ = val;
}
/*
* Interrupt handlers
*/
extern "C" {
static int can1_irq(const int irq, void*)
{
if (irq == STM32_IRQ_CAN1TX) {
handleTxInterrupt(0);
} else if (irq == STM32_IRQ_CAN1RX0) {
handleRxInterrupt(0, 0);
} else if (irq == STM32_IRQ_CAN1RX1) {
handleRxInterrupt(0, 1);
} else {
printf("can1_irq unhandled");
}
return 0;
}
#if CAN_STM32_NUM_IFACES > 1
static int can2_irq(const int irq, void*)
{
if (irq == STM32_IRQ_CAN2TX) {
handleTxInterrupt(1);
} else if (irq == STM32_IRQ_CAN2RX0) {
handleRxInterrupt(1, 0);
} else if (irq == STM32_IRQ_CAN2RX1) {
handleRxInterrupt(1, 1);
} else {
printf("can2_irq unhandled");
}
return 0;
}
#endif
} // extern "C"
#endif