mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 22:48:29 -04:00
179 lines
6.3 KiB
C++
179 lines
6.3 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_MotorsHeli_RSC.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// init_servo - servo initialization on start-up
|
|
void AP_MotorsHeli_RSC::init_servo()
|
|
{
|
|
// set servo range
|
|
_servo_output.set_range(0,1000);
|
|
}
|
|
|
|
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
|
|
void AP_MotorsHeli_RSC::recalc_scalers()
|
|
{
|
|
// recalculate rotor ramp up increment
|
|
if (_ramp_time <= 0) {
|
|
_ramp_time = 1;
|
|
}
|
|
|
|
_ramp_increment = 1.0f / (_ramp_time * _loop_rate);
|
|
|
|
// recalculate rotor runup increment
|
|
if (_runup_time <= 0 ) {
|
|
_runup_time = 1;
|
|
}
|
|
|
|
if (_runup_time < _ramp_time) {
|
|
_runup_time = _ramp_time;
|
|
}
|
|
|
|
_runup_increment = 1.0f / (_runup_time * _loop_rate);
|
|
}
|
|
|
|
// set_power_output_range
|
|
void AP_MotorsHeli_RSC::set_power_output_range(uint16_t power_low, uint16_t power_high)
|
|
{
|
|
_power_output_low = power_low;
|
|
_power_output_high = power_high;
|
|
_power_output_range = _power_output_high - _power_output_low;
|
|
}
|
|
|
|
// output - update value to send to ESC/Servo
|
|
void AP_MotorsHeli_RSC::output(RotorControlState state)
|
|
{
|
|
switch (state){
|
|
case ROTOR_CONTROL_STOP:
|
|
// set rotor ramp to decrease speed to zero, this happens instantly inside update_rotor_ramp()
|
|
update_rotor_ramp(0.0f);
|
|
|
|
// control output forced to zero
|
|
_control_output = 0;
|
|
break;
|
|
|
|
case ROTOR_CONTROL_IDLE:
|
|
// set rotor ramp to decrease speed to zero
|
|
update_rotor_ramp(0.0f);
|
|
|
|
// set rotor control speed to idle speed parameter, this happens instantly and ignore ramping
|
|
_control_output = _idle_output;
|
|
break;
|
|
|
|
case ROTOR_CONTROL_ACTIVE:
|
|
// set main rotor ramp to increase to full speed
|
|
update_rotor_ramp(1.0f);
|
|
|
|
if ((_control_mode == ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH) || (_control_mode == ROTOR_CONTROL_MODE_SPEED_SETPOINT)) {
|
|
// set control rotor speed to ramp slewed value between idle and desired speed
|
|
_control_output = _idle_output + (_rotor_ramp_output * (_desired_speed - _idle_output));
|
|
} else if (_control_mode == ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT) {
|
|
// throttle output depending on estimated power demand. Output is ramped up from idle speed during rotor runup.
|
|
_control_output = _idle_output + (_rotor_ramp_output * ((_power_output_low - _idle_output) + (_power_output_range * _load_feedforward)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
// update rotor speed run-up estimate
|
|
update_rotor_runup();
|
|
|
|
// output to rsc servo
|
|
write_rsc(_control_output);
|
|
}
|
|
|
|
// update_rotor_ramp - slews rotor output scalar between 0 and 1, outputs float scalar to _rotor_ramp_output
|
|
void AP_MotorsHeli_RSC::update_rotor_ramp(float rotor_ramp_input)
|
|
{
|
|
// ramp output upwards towards target
|
|
if (_rotor_ramp_output < rotor_ramp_input) {
|
|
// allow control output to jump to estimated speed
|
|
if (_rotor_ramp_output < _rotor_runup_output) {
|
|
_rotor_ramp_output = _rotor_runup_output;
|
|
}
|
|
// ramp up slowly to target
|
|
_rotor_ramp_output += _ramp_increment;
|
|
if (_rotor_ramp_output > rotor_ramp_input) {
|
|
_rotor_ramp_output = rotor_ramp_input;
|
|
}
|
|
}else{
|
|
// ramping down happens instantly
|
|
_rotor_ramp_output = rotor_ramp_input;
|
|
}
|
|
}
|
|
|
|
// update_rotor_runup - function to slew rotor runup scalar, outputs float scalar to _rotor_runup_ouptut
|
|
void AP_MotorsHeli_RSC::update_rotor_runup()
|
|
{
|
|
// ramp speed estimate towards control out
|
|
if (_rotor_runup_output < _rotor_ramp_output) {
|
|
_rotor_runup_output += _runup_increment;
|
|
if (_rotor_runup_output > _rotor_ramp_output) {
|
|
_rotor_runup_output = _rotor_ramp_output;
|
|
}
|
|
}else{
|
|
_rotor_runup_output -= _runup_increment;
|
|
if (_rotor_runup_output < _rotor_ramp_output) {
|
|
_rotor_runup_output = _rotor_ramp_output;
|
|
}
|
|
}
|
|
|
|
// update run-up complete flag
|
|
|
|
// if control mode is disabled, then run-up complete always returns true
|
|
if ( _control_mode == ROTOR_CONTROL_MODE_DISABLED ){
|
|
_runup_complete = true;
|
|
return;
|
|
}
|
|
|
|
// if rotor ramp and runup are both at full speed, then run-up has been completed
|
|
if (!_runup_complete && (_rotor_ramp_output >= 1.0f) && (_rotor_runup_output >= 1.0f)) {
|
|
_runup_complete = true;
|
|
}
|
|
// if rotor speed is less than critical speed, then run-up is not complete
|
|
// this will prevent the case where the target rotor speed is less than critical speed
|
|
if (_runup_complete && (get_rotor_speed() <= _critical_speed)) {
|
|
_runup_complete = false;
|
|
}
|
|
}
|
|
|
|
// get_rotor_speed - gets rotor speed either as an estimate, or (ToDO) a measured value
|
|
int16_t AP_MotorsHeli_RSC::get_rotor_speed() const
|
|
{
|
|
// if no actual measured rotor speed is available, estimate speed based on rotor runup scalar.
|
|
return (_rotor_runup_output * _max_speed);
|
|
}
|
|
|
|
// write_rsc - outputs pwm onto output rsc channel
|
|
// servo_out parameter is of the range 0 ~ 1000
|
|
void AP_MotorsHeli_RSC::write_rsc(int16_t servo_out)
|
|
{
|
|
if (_control_mode == ROTOR_CONTROL_MODE_DISABLED){
|
|
// do not do servo output to avoid conflicting with other output on the channel
|
|
// ToDo: We should probably use RC_Channel_Aux to avoid this problem
|
|
return;
|
|
} else {
|
|
_servo_output.servo_out = servo_out;
|
|
_servo_output.calc_pwm();
|
|
|
|
hal.rcout->write(_servo_output_channel, _servo_output.radio_out);
|
|
}
|
|
}
|