ardupilot/ArduCopter/control_autotune.cpp

1340 lines
65 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
#if AUTOTUNE_ENABLED == ENABLED
/*
* control_autotune.pde - init and run calls for autotune flight mode
*
* Instructions:
* 1) Set up one flight mode switch position to be AltHold.
* 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch.
* 3) Ensure the ch7 or ch8 switch is in the LOW position.
* 4) Wait for a calm day and go to a large open area.
* 5) Take off and put the vehicle into AltHold mode at a comfortable altitude.
* 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning:
* a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back.
* b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests).
* When you release the sticks it will continue auto tuning where it left off.
* c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs.
* d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered.
* 7) When the tune completes the vehicle will change back to the original PID gains.
* 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains.
* 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains.
* 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently.
* If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm
*
* What it's doing during each "twitch":
* a) invokes 90 deg/sec rate request
* b) records maximum "forward" roll rate and bounce back rate
* c) when copter reaches 20 degrees or 1 second has passed, it commands level
* d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P
* e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec)
* f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec)
* g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec)
* h) invokes a 20deg angle request on roll or pitch
* i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg)
* j) decreases stab P by 25%
*
* Notes: AUTOTUNE should not be set-up as a flight mode, it should be invoked only from the ch7/ch8 switch.
*
*/
#define AUTOTUNE_AXIS_BITMASK_ROLL 1
#define AUTOTUNE_AXIS_BITMASK_PITCH 2
#define AUTOTUNE_AXIS_BITMASK_YAW 4
#define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 500 // timeout for tuning mode's testing step
#define AUTOTUNE_LEVEL_ANGLE_CD 300 // angle which qualifies as level
#define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch
#define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the copter to be level
#define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
#define AUTOTUNE_RD_MIN 0.004f // minimum Rate D value
#define AUTOTUNE_RD_MAX 0.050f // maximum Rate D value
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value
#define AUTOTUNE_RLPF_MAX 10.0f // maximum Rate Yaw filter value
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value
#define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value
#define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value
#define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value
#define AUTOTUNE_RP_ACCEL_MIN 36000.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_Y_ACCEL_MIN 9000.0f // Minimum acceleration for Yaw
#define AUTOTUNE_Y_FILT_FREQ 10.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_SUCCESS_COUNT 4 // how many successful iterations we need to freeze at current gains
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in
#define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning
#define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning
#define AUTOTUNE_SP_BACKOFF 0.9f // Stab P gains are reduced to 90% of their maximum value discovered during tuning
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_ACCEL_Y_BACKOFF 0.75f // back off from maximum acceleration
// roll and pitch axes
#define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 9000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
// yaw axis
#define AUTOTUNE_TARGET_ANGLE_YAW_CD 1000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_YAW_CDS 3000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // target yaw rate during AUTOTUNE_STEP_TWITCHING step
// Auto Tune message ids for ground station
#define AUTOTUNE_MESSAGE_STARTED 0
#define AUTOTUNE_MESSAGE_STOPPED 1
#define AUTOTUNE_MESSAGE_SUCCESS 2
#define AUTOTUNE_MESSAGE_FAILED 3
#define AUTOTUNE_MESSAGE_SAVED_GAINS 4
// autotune modes (high level states)
enum AutoTuneTuneMode {
AUTOTUNE_MODE_UNINITIALISED = 0, // autotune has never been run
AUTOTUNE_MODE_TUNING = 1, // autotune is testing gains
AUTOTUNE_MODE_SUCCESS = 2, // tuning has completed, user is flight testing the new gains
AUTOTUNE_MODE_FAILED = 3, // tuning has failed, user is flying on original gains
};
// steps performed while in the tuning mode
enum AutoTuneStepType {
AUTOTUNE_STEP_WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch
AUTOTUNE_STEP_TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement
AUTOTUNE_STEP_UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results
};
// things that can be tuned
enum AutoTuneAxisType {
AUTOTUNE_AXIS_ROLL = 0, // roll axis is being tuned (either angle or rate)
AUTOTUNE_AXIS_PITCH = 1, // pitch axis is being tuned (either angle or rate)
AUTOTUNE_AXIS_YAW = 2, // pitch axis is being tuned (either angle or rate)
};
// mini steps performed while in Tuning mode, Testing step
enum AutoTuneTuneType {
AUTOTUNE_TYPE_RD_UP = 0, // rate D is being tuned up
AUTOTUNE_TYPE_RD_DOWN = 1, // rate D is being tuned down
AUTOTUNE_TYPE_RP_UP = 2, // rate P is being tuned up
AUTOTUNE_TYPE_SP_DOWN = 3, // angle P is being tuned up
AUTOTUNE_TYPE_SP_UP = 4 // angle P is being tuned up
};
// autotune_state_struct - hold state flags
struct autotune_state_struct {
AutoTuneTuneMode mode : 2; // see AutoTuneTuneMode for what modes are allowed
uint8_t pilot_override : 1; // 1 = pilot is overriding controls so we suspend tuning temporarily
AutoTuneAxisType axis : 2; // see AutoTuneAxisType for which things can be tuned
uint8_t positive_direction : 1; // 0 = tuning in negative direction (i.e. left for roll), 1 = positive direction (i.e. right for roll)
AutoTuneStepType step : 2; // see AutoTuneStepType for what steps are performed
AutoTuneTuneType tune_type : 3; // see AutoTuneTuneType
uint8_t ignore_next : 1; // 1 = ignore the next test
} autotune_state;
// variables
static uint32_t autotune_override_time; // the last time the pilot overrode the controls
static float autotune_test_min; // the minimum angular rate achieved during TESTING_RATE step
static float autotune_test_max; // the maximum angular rate achieved during TESTING_RATE step
static uint32_t autotune_step_start_time; // start time of current tuning step (used for timeout checks)
static uint32_t autotune_step_stop_time; // start time of current tuning step (used for timeout checks)
static int8_t autotune_counter; // counter for tuning gains
static float autotune_target_rate, autotune_start_rate; // target and start rate
static float autotune_target_angle, autotune_start_angle; // target and start angles
static float autotune_desired_yaw; // yaw heading during tune
static float rate_max, autotune_test_accel_max; // maximum acceleration variables
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second
// backup of currently being tuned parameter values
static float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp;
static float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp;
static float orig_yaw_rp = 0, orig_yaw_ri, orig_yaw_rd, orig_yaw_rLPF, orig_yaw_sp;
// currently being tuned parameter values
static float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel;
static float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel;
static float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel;
// autotune_init - should be called when autotune mode is selected
bool Copter::autotune_init(bool ignore_checks)
{
bool success = true;
switch (autotune_state.mode) {
case AUTOTUNE_MODE_FAILED:
// autotune has been run but failed so reset state to uninitialized
autotune_state.mode = AUTOTUNE_MODE_UNINITIALISED;
// no break to allow fall through to restart the tuning
case AUTOTUNE_MODE_UNINITIALISED:
// autotune has never been run
success = autotune_start(false);
if (success) {
// so store current gains as original gains
autotune_backup_gains_and_initialise();
// advance mode to tuning
autotune_state.mode = AUTOTUNE_MODE_TUNING;
// send message to ground station that we've started tuning
autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED);
}
break;
case AUTOTUNE_MODE_TUNING:
// we are restarting tuning after the user must have switched ch7/ch8 off so we restart tuning where we left off
success = autotune_start(false);
if (success) {
// reset gains to tuning-start gains (i.e. low I term)
autotune_load_intra_test_gains();
// write dataflash log even and send message to ground station
Log_Write_Event(DATA_AUTOTUNE_RESTART);
autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED);
}
break;
case AUTOTUNE_MODE_SUCCESS:
// we have completed a tune and the pilot wishes to test the new gains in the current flight mode
// so simply apply tuning gains (i.e. do not change flight mode)
autotune_load_tuned_gains();
Log_Write_Event(DATA_AUTOTUNE_PILOT_TESTING);
break;
}
return success;
}
// autotune_stop - should be called when the ch7/ch8 switch is switched OFF
void Copter::autotune_stop()
{
// set gains to their original values
autotune_load_orig_gains();
// re-enable angle-to-rate request limits
attitude_control.limit_angle_to_rate_request(true);
// log off event and send message to ground station
autotune_update_gcs(AUTOTUNE_MESSAGE_STOPPED);
Log_Write_Event(DATA_AUTOTUNE_OFF);
// Note: we leave the autotune_state.mode as it was so that we know how the autotune ended
// we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch
}
// autotune_start - Initialize autotune flight mode
bool Copter::autotune_start(bool ignore_checks)
{
// only allow flip from Stabilize or AltHold flight modes
if (control_mode != STABILIZE && control_mode != ALT_HOLD) {
return false;
}
// ensure throttle is above zero
if (ap.throttle_zero) {
return false;
}
// ensure we are flying
if (!motors.armed() || !ap.auto_armed || ap.land_complete) {
return false;
}
// initialize vertical speeds and leash lengths
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
pos_control.set_accel_z(g.pilot_accel_z);
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
return true;
}
// autotune_run - runs the autotune flight mode
// should be called at 100hz or more
void Copter::autotune_run()
{
float target_roll, target_pitch;
float target_yaw_rate;
int16_t target_climb_rate;
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
// this should not actually be possible because of the autotune_init() checks
if (!ap.auto_armed || !motors.get_interlock()) {
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
return;
}
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// get pilot desired lean angles
get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
// check for pilot requested take-off - this should not actually be possible because of autotune_init() checks
if (ap.land_complete && target_climb_rate > 0) {
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}
// reset target lean angles and heading while landed
if (ap.land_complete) {
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground
attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
}else{
// check if pilot is overriding the controls
if (!is_zero(target_roll) || !is_zero(target_pitch) || !is_zero(target_yaw_rate) || !is_zero(target_climb_rate)) {
if (!autotune_state.pilot_override) {
autotune_state.pilot_override = true;
// set gains to their original values
autotune_load_orig_gains();
attitude_control.limit_angle_to_rate_request(true);
}
// reset pilot override time
autotune_override_time = millis();
}else if (autotune_state.pilot_override) {
// check if we should resume tuning after pilot's override
if (millis() - autotune_override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) {
autotune_state.pilot_override = false; // turn off pilot override
// set gains to their intra-test values (which are very close to the original gains)
// autotune_load_intra_test_gains(); //I think we should be keeping the originals here to let the I term settle quickly
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; // set tuning step back from beginning
autotune_desired_yaw = ahrs.yaw_sensor;
}
}
// if pilot override call attitude controller
if (autotune_state.pilot_override || autotune_state.mode != AUTOTUNE_MODE_TUNING) {
attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
}else{
// somehow get attitude requests from autotuning
autotune_attitude_control();
}
// call position controller
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt, false);
pos_control.update_z_controller();
}
}
// autotune_attitude_controller - sets attitude control targets during tuning
void Copter::autotune_attitude_control()
{
float rotation_rate = 0.0f; // rotation rate in radians/second
float lean_angle = 0.0f;
const float direction_sign = autotune_state.positive_direction ? 1.0f : -1.0f;
// check tuning step
switch (autotune_state.step) {
case AUTOTUNE_STEP_WAITING_FOR_LEVEL:
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I)
// re-enable rate limits
attitude_control.limit_angle_to_rate_request(true);
// hold level attitude
attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, autotune_desired_yaw, true);
// hold the copter level for 0.5 seconds before we begin a twitch
// reset counter if we are no longer level
if ((labs(ahrs.roll_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) ||
(labs(ahrs.pitch_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) ||
(labs(wrap_180_cd(ahrs.yaw_sensor-(int32_t)autotune_desired_yaw)) > AUTOTUNE_LEVEL_ANGLE_CD) ||
((ToDeg(ahrs.get_gyro().x) * 100.0f) > AUTOTUNE_LEVEL_RATE_RP_CD) ||
((ToDeg(ahrs.get_gyro().y) * 100.0f) > AUTOTUNE_LEVEL_RATE_RP_CD) ||
((ToDeg(ahrs.get_gyro().z) * 100.0f) > AUTOTUNE_LEVEL_RATE_Y_CD) ) {
autotune_step_start_time = millis();
}
// if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step
if (millis() - autotune_step_start_time >= AUTOTUNE_REQUIRED_LEVEL_TIME_MS) {
// initiate variables for next step
autotune_state.step = AUTOTUNE_STEP_TWITCHING;
autotune_step_start_time = millis();
autotune_step_stop_time = autotune_step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS;
autotune_test_max = 0.0f;
autotune_test_min = 0.0f;
rotation_rate_filt.reset(0.0f);
rate_max = 0.0f;
// set gains to their to-be-tested values
autotune_load_twitch_gains();
}
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_roll(), AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_roll(), AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
autotune_start_rate = ToDeg(ahrs.get_gyro().x) * 100.0f;
autotune_start_angle = ahrs.roll_sensor;
rotation_rate_filt.set_cutoff_frequency(g.pid_rate_roll.filt_hz()*2.0f);
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
rotation_rate_filt.reset(autotune_start_rate);
} else {
rotation_rate_filt.reset(0);
}
break;
case AUTOTUNE_AXIS_PITCH:
autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_pitch(), AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_pitch(), AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
autotune_start_rate = ToDeg(ahrs.get_gyro().y) * 100.0f;
autotune_start_angle = ahrs.pitch_sensor;
rotation_rate_filt.set_cutoff_frequency(g.pid_rate_pitch.filt_hz()*2.0f);
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
rotation_rate_filt.reset(autotune_start_rate);
} else {
rotation_rate_filt.reset(0);
}
break;
case AUTOTUNE_AXIS_YAW:
autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_yaw()/1.5f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, AUTOTUNE_TARGET_RATE_YAW_CDS);
autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_yaw(), AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD);
autotune_start_rate = ToDeg(ahrs.get_gyro().z) * 100.0f;
autotune_start_angle = ahrs.yaw_sensor;
rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ);
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
rotation_rate_filt.reset(autotune_start_rate);
} else {
rotation_rate_filt.reset(0);
}
break;
}
break;
case AUTOTUNE_STEP_TWITCHING:
// Run the twitching step
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I)
// disable rate limits
attitude_control.limit_angle_to_rate_request(false);
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
// Testing increasing stabilize P gain so will set lean angle target
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
// request roll to 20deg
attitude_control.angle_ef_roll_pitch_rate_ef_yaw( direction_sign * autotune_target_angle + autotune_start_angle, 0.0f, 0.0f);
break;
case AUTOTUNE_AXIS_PITCH:
// request pitch to 20deg
attitude_control.angle_ef_roll_pitch_rate_ef_yaw( 0.0f, direction_sign * autotune_target_angle + autotune_start_angle, 0.0f);
break;
case AUTOTUNE_AXIS_YAW:
// request pitch to 20deg
attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, wrap_180_cd_float(direction_sign * autotune_target_angle + autotune_start_angle), false);
break;
}
} else {
// Testing rate P and D gains so will set body-frame rate targets.
// Rate controller will use existing body-frame rates and convert to motor outputs
// for all axes except the one we override here.
attitude_control.angle_ef_roll_pitch_rate_ef_yaw( 0.0f, 0.0f, 0.0f);
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
// override body-frame roll rate
attitude_control.rate_bf_roll_target(direction_sign * autotune_target_rate + autotune_start_rate);
break;
case AUTOTUNE_AXIS_PITCH:
// override body-frame pitch rate
attitude_control.rate_bf_pitch_target(direction_sign * autotune_target_rate + autotune_start_rate);
break;
case AUTOTUNE_AXIS_YAW:
// override body-frame yaw rate
attitude_control.rate_bf_yaw_target(direction_sign * autotune_target_rate + autotune_start_rate);
break;
}
}
// capture this iterations rotation rate and lean angle
// Add filter to measurements
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f), MAIN_LOOP_SECONDS);
} else {
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f - autotune_start_rate), MAIN_LOOP_SECONDS);
}
lean_angle = direction_sign * (ahrs.roll_sensor - (int32_t)autotune_start_angle);
break;
case AUTOTUNE_AXIS_PITCH:
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f), MAIN_LOOP_SECONDS);
} else {
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f - autotune_start_rate), MAIN_LOOP_SECONDS);
}
lean_angle = direction_sign * (ahrs.pitch_sensor - (int32_t)autotune_start_angle);
break;
case AUTOTUNE_AXIS_YAW:
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f), MAIN_LOOP_SECONDS);
} else {
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f - autotune_start_rate), MAIN_LOOP_SECONDS);
}
lean_angle = direction_sign * wrap_180_cd(ahrs.yaw_sensor-(int32_t)autotune_start_angle);
break;
}
switch (autotune_state.tune_type) {
case AUTOTUNE_TYPE_RD_UP:
case AUTOTUNE_TYPE_RD_DOWN:
autotune_twitching_test(rotation_rate, autotune_target_rate, autotune_test_min, autotune_test_max);
autotune_twitching_measure_acceleration(autotune_test_accel_max, rotation_rate, rate_max);
if (lean_angle >= autotune_target_angle) {
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
break;
case AUTOTUNE_TYPE_RP_UP:
autotune_twitching_test(rotation_rate, autotune_target_rate*(1+0.5f*g.autotune_aggressiveness), autotune_test_min, autotune_test_max);
autotune_twitching_measure_acceleration(autotune_test_accel_max, rotation_rate, rate_max);
if (lean_angle >= autotune_target_angle) {
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
break;
case AUTOTUNE_TYPE_SP_DOWN:
case AUTOTUNE_TYPE_SP_UP:
autotune_twitching_test(lean_angle, autotune_target_angle*(1+0.5f*g.autotune_aggressiveness), autotune_test_min, autotune_test_max);
autotune_twitching_measure_acceleration(autotune_test_accel_max, rotation_rate - direction_sign * autotune_start_rate, rate_max);
break;
}
// log this iterations lean angle and rotation rate
Log_Write_AutoTuneDetails(lean_angle, rotation_rate);
Log_Write_Rate();
break;
case AUTOTUNE_STEP_UPDATE_GAINS:
// re-enable rate limits
attitude_control.limit_angle_to_rate_request(true);
// log the latest gains
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) {
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_angle, autotune_test_min, autotune_test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp);
break;
case AUTOTUNE_AXIS_PITCH:
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_angle, autotune_test_min, autotune_test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp);
break;
case AUTOTUNE_AXIS_YAW:
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_angle, autotune_test_min, autotune_test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp);
break;
}
} else {
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_rate, autotune_test_min, autotune_test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp);
break;
case AUTOTUNE_AXIS_PITCH:
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_rate, autotune_test_min, autotune_test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp);
break;
case AUTOTUNE_AXIS_YAW:
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_rate, autotune_test_min, autotune_test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp);
break;
}
}
// Check results after mini-step to increase rate D gain
switch (autotune_state.tune_type) {
case AUTOTUNE_TYPE_RD_UP:
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
autotune_updating_d_up(tune_roll_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max);
break;
case AUTOTUNE_AXIS_PITCH:
autotune_updating_d_up(tune_pitch_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max);
break;
case AUTOTUNE_AXIS_YAW:
autotune_updating_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max);
break;
}
break;
// Check results after mini-step to decrease rate D gain
case AUTOTUNE_TYPE_RD_DOWN:
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
autotune_updating_d_down(tune_roll_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max);
break;
case AUTOTUNE_AXIS_PITCH:
autotune_updating_d_down(tune_pitch_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max);
break;
case AUTOTUNE_AXIS_YAW:
autotune_updating_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max);
break;
}
break;
// Check results after mini-step to increase rate P gain
case AUTOTUNE_TYPE_RP_UP:
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
autotune_updating_p_up_d_down(tune_roll_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate*(1+0.5f*g.autotune_aggressiveness), autotune_test_min, autotune_test_max);
break;
case AUTOTUNE_AXIS_PITCH:
autotune_updating_p_up_d_down(tune_pitch_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate*(1+0.5f*g.autotune_aggressiveness), autotune_test_min, autotune_test_max);
break;
case AUTOTUNE_AXIS_YAW:
autotune_updating_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate*(1+0.5f*g.autotune_aggressiveness), autotune_test_min, autotune_test_max);
break;
}
break;
// Check results after mini-step to increase stabilize P gain
case AUTOTUNE_TYPE_SP_DOWN:
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
autotune_updating_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, autotune_target_angle*(1+0.5f*g.autotune_aggressiveness), autotune_test_max);
break;
case AUTOTUNE_AXIS_PITCH:
autotune_updating_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, autotune_target_angle*(1+0.5f*g.autotune_aggressiveness), autotune_test_max);
break;
case AUTOTUNE_AXIS_YAW:
autotune_updating_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max);
break;
}
break;
// Check results after mini-step to increase stabilize P gain
case AUTOTUNE_TYPE_SP_UP:
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
autotune_updating_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, autotune_target_angle*(1+0.5f*g.autotune_aggressiveness), autotune_test_max);
break;
case AUTOTUNE_AXIS_PITCH:
autotune_updating_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, autotune_target_angle*(1+0.5f*g.autotune_aggressiveness), autotune_test_max);
break;
case AUTOTUNE_AXIS_YAW:
autotune_updating_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max);
break;
}
break;
}
// we've complete this step, finalize pids and move to next step
if (autotune_counter >= AUTOTUNE_SUCCESS_COUNT) {
// reset counter
autotune_counter = 0;
// move to the next tuning type
switch (autotune_state.tune_type) {
case AUTOTUNE_TYPE_RD_UP:
autotune_state.tune_type = AutoTuneTuneType(autotune_state.tune_type + 1);
break;
case AUTOTUNE_TYPE_RD_DOWN:
autotune_state.tune_type = AutoTuneTuneType(autotune_state.tune_type + 1);
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
tune_roll_rd = max(AUTOTUNE_RD_MIN, tune_roll_rd * AUTOTUNE_RD_BACKOFF);
tune_roll_rp = max(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RD_BACKOFF);
break;
case AUTOTUNE_AXIS_PITCH:
tune_pitch_rd = max(AUTOTUNE_RD_MIN, tune_pitch_rd * AUTOTUNE_RD_BACKOFF);
tune_pitch_rp = max(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RD_BACKOFF);
break;
case AUTOTUNE_AXIS_YAW:
tune_yaw_rLPF = max(AUTOTUNE_RLPF_MIN, tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF);
tune_yaw_rp = max(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RD_BACKOFF);
break;
}
break;
case AUTOTUNE_TYPE_RP_UP:
autotune_state.tune_type = AutoTuneTuneType(autotune_state.tune_type + 1);
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
tune_roll_rp = max(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RP_BACKOFF);
break;
case AUTOTUNE_AXIS_PITCH:
tune_pitch_rp = max(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RP_BACKOFF);
break;
case AUTOTUNE_AXIS_YAW:
tune_yaw_rp = max(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF);
break;
}
break;
case AUTOTUNE_TYPE_SP_DOWN:
autotune_state.tune_type = AutoTuneTuneType(autotune_state.tune_type + 1);
break;
case AUTOTUNE_TYPE_SP_UP:
// we've reached the end of a D-up-down PI-up-down tune type cycle
autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP;
// advance to the next axis
bool autotune_complete = false;
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
tune_roll_sp = max(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF);
tune_roll_accel = max(AUTOTUNE_RP_ACCEL_MIN, autotune_test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
if (autotune_pitch_enabled()) {
autotune_state.axis = AUTOTUNE_AXIS_PITCH;
} else if (autotune_yaw_enabled()) {
autotune_state.axis = AUTOTUNE_AXIS_YAW;
} else {
autotune_complete = true;
}
break;
case AUTOTUNE_AXIS_PITCH:
tune_pitch_sp = max(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF);
tune_pitch_accel = max(AUTOTUNE_RP_ACCEL_MIN, autotune_test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
if (autotune_yaw_enabled()) {
autotune_state.axis = AUTOTUNE_AXIS_YAW;
} else {
autotune_complete = true;
}
break;
case AUTOTUNE_AXIS_YAW:
tune_yaw_sp = max(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF);
tune_yaw_accel = max(AUTOTUNE_Y_ACCEL_MIN, autotune_test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF);
autotune_complete = true;
break;
}
// if we've just completed all axes we have successfully completed the autotune
// change to TESTING mode to allow user to fly with new gains
if (autotune_complete) {
autotune_state.mode = AUTOTUNE_MODE_SUCCESS;
autotune_update_gcs(AUTOTUNE_MESSAGE_SUCCESS);
Log_Write_Event(DATA_AUTOTUNE_SUCCESS);
AP_Notify::events.autotune_complete = 1;
} else {
AP_Notify::events.autotune_next_axis = 1;
}
break;
}
}
// reverse direction
autotune_state.positive_direction = !autotune_state.positive_direction;
if (autotune_state.axis == AUTOTUNE_AXIS_YAW) {
attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, ahrs.yaw_sensor, false);
}
// set gains to their intra-test values (which are very close to the original gains)
autotune_load_intra_test_gains();
// reset testing step
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL;
autotune_step_start_time = millis();
break;
}
}
// autotune_backup_gains_and_initialise - store current gains as originals
// called before tuning starts to backup original gains
void Copter::autotune_backup_gains_and_initialise()
{
// initialise state because this is our first time
if (autotune_roll_enabled()) {
autotune_state.axis = AUTOTUNE_AXIS_ROLL;
} else if (autotune_pitch_enabled()) {
autotune_state.axis = AUTOTUNE_AXIS_PITCH;
} else if (autotune_yaw_enabled()) {
autotune_state.axis = AUTOTUNE_AXIS_YAW;
}
autotune_state.positive_direction = false;
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL;
autotune_step_start_time = millis();
autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP;
autotune_desired_yaw = ahrs.yaw_sensor;
g.autotune_aggressiveness = constrain_float(g.autotune_aggressiveness, 0.05f, 0.1f);
// backup original pids and initialise tuned pid values
if (autotune_roll_enabled()) {
orig_roll_rp = g.pid_rate_roll.kP();
orig_roll_ri = g.pid_rate_roll.kI();
orig_roll_rd = g.pid_rate_roll.kD();
orig_roll_sp = g.p_stabilize_roll.kP();
tune_roll_rp = g.pid_rate_roll.kP();
tune_roll_rd = g.pid_rate_roll.kD();
tune_roll_sp = g.p_stabilize_roll.kP();
}
if (autotune_pitch_enabled()) {
orig_pitch_rp = g.pid_rate_pitch.kP();
orig_pitch_ri = g.pid_rate_pitch.kI();
orig_pitch_rd = g.pid_rate_pitch.kD();
orig_pitch_sp = g.p_stabilize_pitch.kP();
tune_pitch_rp = g.pid_rate_pitch.kP();
tune_pitch_rd = g.pid_rate_pitch.kD();
tune_pitch_sp = g.p_stabilize_pitch.kP();
}
if (autotune_yaw_enabled()) {
orig_yaw_rp = g.pid_rate_yaw.kP();
orig_yaw_ri = g.pid_rate_yaw.kI();
orig_yaw_rd = g.pid_rate_yaw.kD();
orig_yaw_rLPF = g.pid_rate_yaw.filt_hz();
orig_yaw_sp = g.p_stabilize_yaw.kP();
tune_yaw_rp = g.pid_rate_yaw.kP();
tune_yaw_rLPF = g.pid_rate_yaw.filt_hz();
tune_yaw_sp = g.p_stabilize_yaw.kP();
}
Log_Write_Event(DATA_AUTOTUNE_INITIALISED);
}
// autotune_load_orig_gains - set gains to their original values
// called by autotune_stop and autotune_failed functions
void Copter::autotune_load_orig_gains()
{
// sanity check the gains
bool failed = false;
if (autotune_roll_enabled()) {
if (!is_zero(orig_roll_rp) || !is_zero(orig_roll_sp)) {
g.pid_rate_roll.kP(orig_roll_rp);
g.pid_rate_roll.kI(orig_roll_ri);
g.pid_rate_roll.kD(orig_roll_rd);
g.p_stabilize_roll.kP(orig_roll_sp);
} else {
failed = true;
}
}
if (autotune_pitch_enabled()) {
if (!is_zero(orig_pitch_rp) || !is_zero(orig_pitch_sp)) {
g.pid_rate_pitch.kP(orig_pitch_rp);
g.pid_rate_pitch.kI(orig_pitch_ri);
g.pid_rate_pitch.kD(orig_pitch_rd);
g.p_stabilize_pitch.kP(orig_pitch_sp);
} else {
failed = true;
}
}
if (autotune_yaw_enabled()) {
if (!is_zero(orig_yaw_rp) || !is_zero(orig_yaw_sp) || !is_zero(orig_yaw_rLPF)) {
g.pid_rate_yaw.kP(orig_yaw_rp);
g.pid_rate_yaw.kI(orig_yaw_ri);
g.pid_rate_yaw.kD(orig_yaw_rd);
g.pid_rate_yaw.filt_hz(orig_yaw_rLPF);
g.p_stabilize_yaw.kP(orig_yaw_sp);
} else {
failed = true;
}
}
if (failed) {
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
// autotune_load_tuned_gains - load tuned gains
void Copter::autotune_load_tuned_gains()
{
// sanity check the gains
bool failed = true;
if (autotune_roll_enabled()) {
if (!is_zero(tune_roll_rp)) {
g.pid_rate_roll.kP(tune_roll_rp);
g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL);
g.pid_rate_roll.kD(tune_roll_rd);
g.p_stabilize_roll.kP(tune_roll_sp);
failed = false;
}
}
if (autotune_pitch_enabled()) {
if (!is_zero(tune_pitch_rp)) {
g.pid_rate_pitch.kP(tune_pitch_rp);
g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL);
g.pid_rate_pitch.kD(tune_pitch_rd);
g.p_stabilize_pitch.kP(tune_pitch_sp);
failed = false;
}
}
if (autotune_yaw_enabled()) {
if (!is_zero(tune_yaw_rp)) {
g.pid_rate_yaw.kP(tune_yaw_rp);
g.pid_rate_yaw.kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
g.pid_rate_yaw.kD(0.0f);
g.pid_rate_yaw.filt_hz(tune_yaw_rLPF);
g.p_stabilize_yaw.kP(tune_yaw_sp);
failed = false;
}
}
if (failed) {
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
// autotune_load_intra_test_gains - gains used between tests
// called during testing mode's update-gains step to set gains ahead of return-to-level step
void Copter::autotune_load_intra_test_gains()
{
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term)
// sanity check the gains
bool failed = true;
if (autotune_roll_enabled() && !is_zero(orig_roll_rp)) {
g.pid_rate_roll.kP(orig_roll_rp);
g.pid_rate_roll.kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
g.pid_rate_roll.kD(orig_roll_rd);
g.p_stabilize_roll.kP(orig_roll_sp);
failed = false;
}
if (autotune_pitch_enabled() && !is_zero(orig_pitch_rp)) {
g.pid_rate_pitch.kP(orig_pitch_rp);
g.pid_rate_pitch.kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
g.pid_rate_pitch.kD(orig_pitch_rd);
g.p_stabilize_pitch.kP(orig_pitch_sp);
failed = false;
}
if (autotune_yaw_enabled() && !is_zero(orig_yaw_rp)) {
g.pid_rate_yaw.kP(orig_yaw_rp);
g.pid_rate_yaw.kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
g.pid_rate_yaw.kD(orig_yaw_rd);
g.pid_rate_yaw.filt_hz(orig_yaw_rLPF);
g.p_stabilize_yaw.kP(orig_yaw_sp);
failed = false;
}
if (failed) {
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
// autotune_load_twitch_gains - load the to-be-tested gains for a single axis
// called by autotune_attitude_control() just before it beings testing a gain (i.e. just before it twitches)
void Copter::autotune_load_twitch_gains()
{
bool failed = true;
switch (autotune_state.axis) {
case AUTOTUNE_AXIS_ROLL:
if (!is_zero(tune_roll_rp)) {
g.pid_rate_roll.kP(tune_roll_rp);
g.pid_rate_roll.kI(tune_roll_rp*0.01f);
g.pid_rate_roll.kD(tune_roll_rd);
g.p_stabilize_roll.kP(tune_roll_sp);
failed = false;
}
break;
case AUTOTUNE_AXIS_PITCH:
if (!is_zero(tune_pitch_rp)) {
g.pid_rate_pitch.kP(tune_pitch_rp);
g.pid_rate_pitch.kI(tune_pitch_rp*0.01f);
g.pid_rate_pitch.kD(tune_pitch_rd);
g.p_stabilize_pitch.kP(tune_pitch_sp);
failed = false;
}
break;
case AUTOTUNE_AXIS_YAW:
if (!is_zero(tune_yaw_rp)) {
g.pid_rate_yaw.kP(tune_yaw_rp);
g.pid_rate_yaw.kI(tune_yaw_rp*0.01f);
g.pid_rate_yaw.kD(0.0f);
g.pid_rate_yaw.filt_hz(tune_yaw_rLPF);
g.p_stabilize_yaw.kP(tune_yaw_sp);
failed = false;
}
break;
}
if (failed) {
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
// autotune_save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void Copter::autotune_save_tuning_gains()
{
// if we successfully completed tuning
if (autotune_state.mode == AUTOTUNE_MODE_SUCCESS) {
if (attitude_control.get_bf_feedforward()) {
attitude_control.bf_feedforward_save(true);
if (attitude_control.get_accel_roll_max() < AUTOTUNE_RP_ACCEL_MIN/2.0f){
attitude_control.save_accel_roll_max(AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT);
}
if (attitude_control.get_accel_pitch_max() < AUTOTUNE_RP_ACCEL_MIN/2.0f){
attitude_control.save_accel_pitch_max(AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT);
}
if (attitude_control.get_accel_yaw_max() < AUTOTUNE_Y_ACCEL_MIN/2.0f){
attitude_control.save_accel_yaw_max(AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT);
}
}
// sanity check the rate P values
if (autotune_roll_enabled() && !is_zero(tune_roll_rp)) {
// rate roll gains
g.pid_rate_roll.kP(tune_roll_rp);
g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL);
g.pid_rate_roll.kD(tune_roll_rd);
g.pid_rate_roll.save_gains();
// stabilize roll
g.p_stabilize_roll.kP(tune_roll_sp);
g.p_stabilize_roll.save_gains();
// acceleration roll
attitude_control.save_accel_roll_max(tune_roll_accel);
// resave pids to originals in case the autotune is run again
orig_roll_rp = g.pid_rate_roll.kP();
orig_roll_ri = g.pid_rate_roll.kI();
orig_roll_rd = g.pid_rate_roll.kD();
orig_roll_sp = g.p_stabilize_roll.kP();
}
if (autotune_pitch_enabled() && !is_zero(tune_pitch_rp)) {
// rate pitch gains
g.pid_rate_pitch.kP(tune_pitch_rp);
g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL);
g.pid_rate_pitch.kD(tune_pitch_rd);
g.pid_rate_pitch.save_gains();
// stabilize pitch
g.p_stabilize_pitch.kP(tune_pitch_sp);
g.p_stabilize_pitch.save_gains();
// acceleration pitch
attitude_control.save_accel_pitch_max(tune_pitch_accel);
// resave pids to originals in case the autotune is run again
orig_pitch_rp = g.pid_rate_pitch.kP();
orig_pitch_ri = g.pid_rate_pitch.kI();
orig_pitch_rd = g.pid_rate_pitch.kD();
orig_pitch_sp = g.p_stabilize_pitch.kP();
}
if (autotune_yaw_enabled() && !is_zero(tune_yaw_rp)) {
// rate yaw gains
g.pid_rate_yaw.kP(tune_yaw_rp);
g.pid_rate_yaw.kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
g.pid_rate_yaw.kD(0.0f);
g.pid_rate_yaw.filt_hz(tune_yaw_rLPF);
g.pid_rate_yaw.save_gains();
// stabilize yaw
g.p_stabilize_yaw.kP(tune_yaw_sp);
g.p_stabilize_yaw.save_gains();
// acceleration yaw
attitude_control.save_accel_yaw_max(tune_yaw_accel);
// resave pids to originals in case the autotune is run again
orig_yaw_rp = g.pid_rate_yaw.kP();
orig_yaw_ri = g.pid_rate_yaw.kI();
orig_yaw_rd = g.pid_rate_yaw.kD();
orig_yaw_rLPF = g.pid_rate_yaw.filt_hz();
orig_yaw_sp = g.p_stabilize_yaw.kP();
}
// update GCS and log save gains event
autotune_update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
Log_Write_Event(DATA_AUTOTUNE_SAVEDGAINS);
// reset Autotune so that gains are not saved again and autotune can be run again.
autotune_state.mode = AUTOTUNE_MODE_UNINITIALISED;
}
}
// autotune_update_gcs - send message to ground station
void Copter::autotune_update_gcs(uint8_t message_id)
{
switch (message_id) {
case AUTOTUNE_MESSAGE_STARTED:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Started"));
break;
case AUTOTUNE_MESSAGE_STOPPED:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Stopped"));
break;
case AUTOTUNE_MESSAGE_SUCCESS:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Success"));
break;
case AUTOTUNE_MESSAGE_FAILED:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Failed"));
break;
case AUTOTUNE_MESSAGE_SAVED_GAINS:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Saved Gains"));
break;
}
}
// axis helper functions
inline bool Copter::autotune_roll_enabled() {
return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_ROLL;
}
inline bool Copter::autotune_pitch_enabled() {
return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_PITCH;
}
inline bool Copter::autotune_yaw_enabled() {
return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW;
}
// autotune_twitching_test - twitching tests
// update min and max and test for end conditions
void Copter::autotune_twitching_test(float measurement, float target, float &measurement_min, float &measurement_max)
{
// capture maximum measurement
if (measurement > measurement_max) {
// the measurement is continuing to increase without stopping
measurement_max = measurement;
measurement_min = measurement;
}
// capture minimum measurement after the measurement has peaked (aka "bounce back")
if ((measurement < measurement_min) && (measurement_max > target * 0.5f)) {
// the measurement is bouncing back
measurement_min = measurement;
}
// calculate early stopping time based on the time it takes to get to 90%
if (measurement_max < target * 0.75f) {
// the measurement not reached the 90% threshold yet
autotune_step_stop_time = autotune_step_start_time + (millis() - autotune_step_start_time) * 3.0f;
autotune_step_stop_time = min(autotune_step_stop_time, autotune_step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (measurement_max > target) {
// the measurement has passed the target
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) {
// the measurement has passed 50% of the target and bounce back is larger than the threshold
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
if (millis() >= autotune_step_stop_time) {
// we have passed the maximum stop time
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
}
// autotune_updating_d_up - increase D and adjust P to optimize the D term for a little bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void Copter::autotune_updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max)
{
if (measurement_max > target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
if (tune_p < tune_p_min) {
// P gain is at minimum so start reducing D
tune_p = tune_p_min;
tune_d -= tune_d*tune_d_step_ratio;
if (tune_d <= tune_d_min) {
// We have reached minimum D gain so stop tuning
tune_d = tune_d_min;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
// we have a good measurement of bounce back
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) {
// ignore the next result unless it is the same as this one
autotune_state.ignore_next = 1;
// bounce back is bigger than our threshold so increment the success counter
autotune_counter++;
}else{
if (autotune_state.ignore_next == 0){
// bounce back is smaller than our threshold so decrement the success counter
if (autotune_counter > 0 ) {
autotune_counter--;
}
// increase D gain (which should increase bounce back)
tune_d += tune_d*tune_d_step_ratio*2.0f;
// stop tuning if we hit maximum D
if (tune_d >= tune_d_max) {
tune_d = tune_d_max;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
} else {
autotune_state.ignore_next = 0;
}
}
}
}
// autotune_updating_d_down - decrease D and adjust P to optimize the D term for no bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void Copter::autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max)
{
if (measurement_max > target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
if (tune_p < tune_p_min) {
// P gain is at minimum so start reducing D gain
tune_p = tune_p_min;
tune_d -= tune_d*tune_d_step_ratio;
if (tune_d <= tune_d_min) {
// We have reached minimum D so stop tuning
tune_d = tune_d_min;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
// we have a good measurement of bounce back
if (measurement_max-measurement_min < measurement_max*g.autotune_aggressiveness) {
if (autotune_state.ignore_next == 0){
// bounce back is less than our threshold so increment the success counter
autotune_counter++;
} else {
autotune_state.ignore_next = 0;
}
}else{
// ignore the next result unless it is the same as this one
autotune_state.ignore_next = 1;
// bounce back is larger than our threshold so decrement the success counter
if (autotune_counter > 0 ) {
autotune_counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// stop tuning if we hit minimum D
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
}
// autotune_updating_p_down - decrease P until we don't reach the target before time out
// P is decreased to ensure we are not overshooting the target
void Copter::autotune_updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max)
{
if (measurement_max < target) {
if (autotune_state.ignore_next == 0){
// if maximum measurement was lower than target so increment the success counter
autotune_counter++;
} else {
autotune_state.ignore_next = 0;
}
}else{
// ignore the next result unless it is the same as this one
autotune_state.ignore_next = 1;
// if maximum measurement was higher than target so decrement the success counter
if (autotune_counter > 0 ) {
autotune_counter--;
}
// decrease P gain (which should decrease the maximum)
tune_p -= tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
// autotune_updating_p_up - increase P to ensure the target is reached
// P is increased until we achieve our target within a reasonable time
void Copter::autotune_updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max)
{
if (measurement_max > target) {
// ignore the next result unless it is the same as this one
autotune_state.ignore_next = 1;
// if maximum measurement was greater than target so increment the success counter
autotune_counter++;
}else{
if (autotune_state.ignore_next == 0){
// if maximum measurement was lower than target so decrement the success counter
if (autotune_counter > 0 ) {
autotune_counter--;
}
// increase P gain (which should increase the maximum)
tune_p += tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
} else {
autotune_state.ignore_next = 0;
}
}
}
// autotune_updating_p_up - increase P to ensure the target is reached while checking bounce back isn't increasing
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
void Copter::autotune_updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max)
{
if (measurement_max > target) {
// ignore the next result unless it is the same as this one
autotune_state.ignore_next = 1;
// if maximum measurement was greater than target so increment the success counter
autotune_counter++;
}else if ((measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) {
// if bounce back was larger than the threshold so decrement the success counter
if (autotune_counter > 0 ) {
autotune_counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// stop tuning if we hit minimum D
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
// decrease P gain to match D gain reduction
tune_p -= tune_p*tune_p_step_ratio;
// stop tuning if we hit minimum P
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
// cancel change in direction
autotune_state.positive_direction = !autotune_state.positive_direction;
}else{
if (autotune_state.ignore_next == 0){
// if maximum measurement was lower than target so decrement the success counter
if (autotune_counter > 0 ) {
autotune_counter--;
}
// increase P gain (which should increase the maximum)
tune_p += tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
} else {
autotune_state.ignore_next = 0;
}
}
}
// autotune_twitching_measure_acceleration - measure rate of change of measurement
void Copter::autotune_twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max)
{
if (rate_measurement_max < rate_measurement) {
rate_measurement_max = rate_measurement;
rate_of_change = (1000.0f*rate_measurement_max)/(millis() - autotune_step_start_time);
}
}
#endif // AUTOTUNE_ENABLED == ENABLED