mirror of https://github.com/ArduPilot/ardupilot
396 lines
10 KiB
C++
396 lines
10 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
originally written by Jose Julio, Pat Hickey and Jordi Muñoz
|
|
|
|
Heavily modified by Andrew Tridgell
|
|
*/
|
|
|
|
#include <AP_HAL.h>
|
|
#include "AP_Baro.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define CMD_MS5611_RESET 0x1E
|
|
#define CMD_MS5611_PROM_Setup 0xA0
|
|
#define CMD_MS5611_PROM_C1 0xA2
|
|
#define CMD_MS5611_PROM_C2 0xA4
|
|
#define CMD_MS5611_PROM_C3 0xA6
|
|
#define CMD_MS5611_PROM_C4 0xA8
|
|
#define CMD_MS5611_PROM_C5 0xAA
|
|
#define CMD_MS5611_PROM_C6 0xAC
|
|
#define CMD_MS5611_PROM_CRC 0xAE
|
|
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling)
|
|
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling)
|
|
|
|
// SPI Device //////////////////////////////////////////////////////////////////
|
|
|
|
AP_SerialBus_SPI::AP_SerialBus_SPI(enum AP_HAL::SPIDevice device, enum AP_HAL::SPIDeviceDriver::bus_speed speed) :
|
|
_device(device),
|
|
_speed(speed),
|
|
_spi(NULL),
|
|
_spi_sem(NULL)
|
|
{
|
|
}
|
|
|
|
void AP_SerialBus_SPI::init()
|
|
{
|
|
_spi = hal.spi->device(_device);
|
|
if (_spi == NULL) {
|
|
hal.scheduler->panic(PSTR("did not get valid SPI device driver!"));
|
|
}
|
|
_spi_sem = _spi->get_semaphore();
|
|
if (_spi_sem == NULL) {
|
|
hal.scheduler->panic(PSTR("AP_SerialBus_SPI did not get valid SPI semaphroe!"));
|
|
}
|
|
_spi->set_bus_speed(_speed);
|
|
}
|
|
|
|
uint16_t AP_SerialBus_SPI::read_16bits(uint8_t reg)
|
|
{
|
|
uint8_t tx[3] = { reg, 0, 0 };
|
|
uint8_t rx[3];
|
|
_spi->transaction(tx, rx, 3);
|
|
return ((uint16_t) rx[1] << 8 ) | ( rx[2] );
|
|
}
|
|
|
|
uint32_t AP_SerialBus_SPI::read_24bits(uint8_t reg)
|
|
{
|
|
uint8_t tx[4] = { reg, 0, 0, 0 };
|
|
uint8_t rx[4];
|
|
_spi->transaction(tx, rx, 4);
|
|
return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]);
|
|
}
|
|
|
|
void AP_SerialBus_SPI::write(uint8_t reg)
|
|
{
|
|
uint8_t tx[1] = { reg };
|
|
_spi->transaction(tx, NULL, 1);
|
|
}
|
|
|
|
bool AP_SerialBus_SPI::sem_take_blocking()
|
|
{
|
|
return _spi_sem->take(10);
|
|
}
|
|
|
|
bool AP_SerialBus_SPI::sem_take_nonblocking()
|
|
{
|
|
return _spi_sem->take_nonblocking();
|
|
}
|
|
|
|
void AP_SerialBus_SPI::sem_give()
|
|
{
|
|
_spi_sem->give();
|
|
}
|
|
|
|
|
|
/// I2C SerialBus
|
|
AP_SerialBus_I2C::AP_SerialBus_I2C(uint8_t addr) :
|
|
_addr(addr),
|
|
_i2c_sem(NULL)
|
|
{
|
|
}
|
|
|
|
void AP_SerialBus_I2C::init()
|
|
{
|
|
_i2c_sem = hal.i2c->get_semaphore();
|
|
if (_i2c_sem == NULL) {
|
|
hal.scheduler->panic(PSTR("AP_SerialBus_I2C did not get valid I2C semaphore!"));
|
|
}
|
|
}
|
|
|
|
uint16_t AP_SerialBus_I2C::read_16bits(uint8_t reg)
|
|
{
|
|
uint8_t buf[2];
|
|
if (hal.i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) {
|
|
return (((uint16_t)(buf[0]) << 8) | buf[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t AP_SerialBus_I2C::read_24bits(uint8_t reg)
|
|
{
|
|
uint8_t buf[3];
|
|
if (hal.i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) {
|
|
return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void AP_SerialBus_I2C::write(uint8_t reg)
|
|
{
|
|
hal.i2c->write(_addr, 1, ®);
|
|
}
|
|
|
|
bool AP_SerialBus_I2C::sem_take_blocking()
|
|
{
|
|
return _i2c_sem->take(10);
|
|
}
|
|
|
|
bool AP_SerialBus_I2C::sem_take_nonblocking()
|
|
{
|
|
return _i2c_sem->take_nonblocking();
|
|
}
|
|
|
|
void AP_SerialBus_I2C::sem_give()
|
|
{
|
|
_i2c_sem->give();
|
|
}
|
|
|
|
/*
|
|
constructor
|
|
*/
|
|
AP_Baro_MS5611::AP_Baro_MS5611(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) :
|
|
AP_Baro_Backend(baro),
|
|
_serial(serial),
|
|
_updated(false),
|
|
_state(0),
|
|
_last_timer(0),
|
|
_use_timer(use_timer)
|
|
{
|
|
_instance = _frontend.register_sensor();
|
|
_serial->init();
|
|
if (!_serial->sem_take_blocking()){
|
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: failed to take serial semaphore for init"));
|
|
}
|
|
|
|
_serial->write(CMD_MS5611_RESET);
|
|
hal.scheduler->delay(4);
|
|
|
|
// We read the factory calibration
|
|
// The on-chip CRC is not used
|
|
C1 = _serial->read_16bits(CMD_MS5611_PROM_C1);
|
|
C2 = _serial->read_16bits(CMD_MS5611_PROM_C2);
|
|
C3 = _serial->read_16bits(CMD_MS5611_PROM_C3);
|
|
C4 = _serial->read_16bits(CMD_MS5611_PROM_C4);
|
|
C5 = _serial->read_16bits(CMD_MS5611_PROM_C5);
|
|
C6 = _serial->read_16bits(CMD_MS5611_PROM_C6);
|
|
|
|
if (!_check_crc()) {
|
|
hal.scheduler->panic(PSTR("Bad CRC on MS5611"));
|
|
}
|
|
|
|
// Send a command to read Temp first
|
|
_serial->write(CMD_CONVERT_D2_OSR4096);
|
|
_last_timer = hal.scheduler->micros();
|
|
_state = 0;
|
|
|
|
_s_D1 = 0;
|
|
_s_D2 = 0;
|
|
_d1_count = 0;
|
|
_d2_count = 0;
|
|
|
|
_serial->sem_give();
|
|
|
|
if (_use_timer) {
|
|
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Baro_MS5611::_timer, void));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* MS5611 crc4 method based on PX4Firmware code
|
|
*/
|
|
bool AP_Baro_MS5611::_check_crc(void)
|
|
{
|
|
int16_t cnt;
|
|
uint16_t n_rem;
|
|
uint16_t crc_read;
|
|
uint8_t n_bit;
|
|
uint16_t n_prom[8] = { _serial->read_16bits(CMD_MS5611_PROM_Setup),
|
|
C1, C2, C3, C4, C5, C6,
|
|
_serial->read_16bits(CMD_MS5611_PROM_CRC) };
|
|
n_rem = 0x00;
|
|
|
|
/* save the read crc */
|
|
crc_read = n_prom[7];
|
|
|
|
/* remove CRC byte */
|
|
n_prom[7] = (0xFF00 & (n_prom[7]));
|
|
|
|
for (cnt = 0; cnt < 16; cnt++) {
|
|
/* uneven bytes */
|
|
if (cnt & 1) {
|
|
n_rem ^= (uint8_t)((n_prom[cnt >> 1]) & 0x00FF);
|
|
|
|
} else {
|
|
n_rem ^= (uint8_t)(n_prom[cnt >> 1] >> 8);
|
|
}
|
|
|
|
for (n_bit = 8; n_bit > 0; n_bit--) {
|
|
if (n_rem & 0x8000) {
|
|
n_rem = (n_rem << 1) ^ 0x3000;
|
|
|
|
} else {
|
|
n_rem = (n_rem << 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* final 4 bit remainder is CRC value */
|
|
n_rem = (0x000F & (n_rem >> 12));
|
|
n_prom[7] = crc_read;
|
|
|
|
/* return true if CRCs match */
|
|
return (0x000F & crc_read) == (n_rem ^ 0x00);
|
|
}
|
|
|
|
|
|
/*
|
|
Read the sensor. This is a state machine
|
|
We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
|
|
temperature does not change so quickly...
|
|
*/
|
|
void AP_Baro_MS5611::_timer(void)
|
|
{
|
|
// Throttle read rate to 100hz maximum.
|
|
if (hal.scheduler->micros() - _last_timer < 10000) {
|
|
return;
|
|
}
|
|
|
|
if (!_serial->sem_take_nonblocking()) {
|
|
return;
|
|
}
|
|
|
|
if (_state == 0) {
|
|
// On state 0 we read temp
|
|
uint32_t d2 = _serial->read_24bits(0);
|
|
if (d2 != 0) {
|
|
_s_D2 += d2;
|
|
_d2_count++;
|
|
if (_d2_count == 32) {
|
|
// we have summed 32 values. This only happens
|
|
// when we stop reading the barometer for a long time
|
|
// (more than 1.2 seconds)
|
|
_s_D2 >>= 1;
|
|
_d2_count = 16;
|
|
}
|
|
}
|
|
_state++;
|
|
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
|
|
} else {
|
|
uint32_t d1 = _serial->read_24bits(0);;
|
|
if (d1 != 0) {
|
|
// occasional zero values have been seen on the PXF
|
|
// board. These may be SPI errors, but safest to ignore
|
|
_s_D1 += d1;
|
|
_d1_count++;
|
|
if (_d1_count == 128) {
|
|
// we have summed 128 values. This only happens
|
|
// when we stop reading the barometer for a long time
|
|
// (more than 1.2 seconds)
|
|
_s_D1 >>= 1;
|
|
_d1_count = 64;
|
|
}
|
|
// Now a new reading exists
|
|
_updated = true;
|
|
}
|
|
_state++;
|
|
if (_state == 5) {
|
|
_serial->write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
|
|
_state = 0;
|
|
} else {
|
|
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
|
|
}
|
|
}
|
|
|
|
_last_timer = hal.scheduler->micros();
|
|
_serial->sem_give();
|
|
}
|
|
|
|
void AP_Baro_MS5611::update()
|
|
{
|
|
if (!_use_timer) {
|
|
// if we're not using the timer then accumulate one more time
|
|
// to cope with the calibration loop and minimise lag
|
|
accumulate();
|
|
}
|
|
|
|
if (!_updated) {
|
|
return;
|
|
}
|
|
uint32_t sD1, sD2;
|
|
uint8_t d1count, d2count;
|
|
|
|
// Suspend timer procs because these variables are written to
|
|
// in "_update".
|
|
hal.scheduler->suspend_timer_procs();
|
|
sD1 = _s_D1; _s_D1 = 0;
|
|
sD2 = _s_D2; _s_D2 = 0;
|
|
d1count = _d1_count; _d1_count = 0;
|
|
d2count = _d2_count; _d2_count = 0;
|
|
_updated = false;
|
|
hal.scheduler->resume_timer_procs();
|
|
|
|
if (d1count != 0) {
|
|
D1 = ((float)sD1) / d1count;
|
|
}
|
|
if (d2count != 0) {
|
|
D2 = ((float)sD2) / d2count;
|
|
}
|
|
_calculate();
|
|
}
|
|
|
|
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
|
|
void AP_Baro_MS5611::_calculate()
|
|
{
|
|
float dT;
|
|
float TEMP;
|
|
float OFF;
|
|
float SENS;
|
|
|
|
// Formulas from manufacturer datasheet
|
|
// sub -20c temperature compensation is not included
|
|
|
|
// we do the calculations using floating point
|
|
// as this is much faster on an AVR2560, and also allows
|
|
// us to take advantage of the averaging of D1 and D1 over
|
|
// multiple samples, giving us more precision
|
|
dT = D2-(((uint32_t)C5)<<8);
|
|
TEMP = (dT * C6)/8388608;
|
|
OFF = C2 * 65536.0f + (C4 * dT) / 128;
|
|
SENS = C1 * 32768.0f + (C3 * dT) / 256;
|
|
|
|
if (TEMP < 0) {
|
|
// second order temperature compensation when under 20 degrees C
|
|
float T2 = (dT*dT) / 0x80000000;
|
|
float Aux = TEMP*TEMP;
|
|
float OFF2 = 2.5f*Aux;
|
|
float SENS2 = 1.25f*Aux;
|
|
TEMP = TEMP - T2;
|
|
OFF = OFF - OFF2;
|
|
SENS = SENS - SENS2;
|
|
}
|
|
|
|
float pressure = (D1*SENS/2097152 - OFF)/32768;
|
|
float temperature = (TEMP + 2000) * 0.01f;
|
|
_copy_to_frontend(_instance, pressure, temperature);
|
|
}
|
|
|
|
/*
|
|
Read the sensor from main code. This is only used for I2C MS5611 to
|
|
avoid conflicts on the semaphore from calling it in a timer, which
|
|
conflicts with the compass driver use of I2C
|
|
*/
|
|
void AP_Baro_MS5611::accumulate(void)
|
|
{
|
|
if (!_use_timer) {
|
|
// the timer isn't being called as a timer, so we need to call
|
|
// it in accumulate()
|
|
_timer();
|
|
}
|
|
}
|