mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 08:38:36 -04:00
413 lines
12 KiB
C++
413 lines
12 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_AccelCal.h"
|
|
#include <stdarg.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <GCS_MAVLink/GCS_MAVLink.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_INS_ACCELCAL_ENABLED
|
|
#define AP_ACCELCAL_POSITION_REQUEST_INTERVAL_MS 1000
|
|
|
|
#define _printf(fmt, args ...) do { \
|
|
if (_gcs != nullptr) { \
|
|
_gcs->send_text(MAV_SEVERITY_CRITICAL, fmt, ## args); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
const extern AP_HAL::HAL& hal;
|
|
static bool _start_collect_sample;
|
|
|
|
uint8_t AP_AccelCal::_num_clients = 0;
|
|
AP_AccelCal_Client* AP_AccelCal::_clients[AP_ACCELCAL_MAX_NUM_CLIENTS] {};
|
|
|
|
void AP_AccelCal::update()
|
|
{
|
|
if (!get_calibrator(0)) {
|
|
// no calibrators
|
|
return;
|
|
}
|
|
|
|
if (_started) {
|
|
update_status();
|
|
|
|
AccelCalibrator *cal;
|
|
uint8_t num_active_calibrators = 0;
|
|
for(uint8_t i=0; (cal = get_calibrator(i)); i++) {
|
|
num_active_calibrators++;
|
|
}
|
|
if (num_active_calibrators != _num_active_calibrators) {
|
|
fail();
|
|
return;
|
|
}
|
|
if(_start_collect_sample) {
|
|
collect_sample();
|
|
}
|
|
switch(_status) {
|
|
case ACCEL_CAL_NOT_STARTED:
|
|
fail();
|
|
return;
|
|
case ACCEL_CAL_WAITING_FOR_ORIENTATION: {
|
|
// if we're waiting for orientation, first ensure that all calibrators are on the same step
|
|
uint8_t step;
|
|
if ((cal = get_calibrator(0)) == nullptr) {
|
|
fail();
|
|
return;
|
|
}
|
|
step = cal->get_num_samples_collected()+1;
|
|
|
|
for(uint8_t i=1 ; (cal = get_calibrator(i)) ; i++) {
|
|
if (step != cal->get_num_samples_collected()+1) {
|
|
fail();
|
|
return;
|
|
}
|
|
}
|
|
// if we're on a new step, print a message describing the step
|
|
if (step != _step) {
|
|
_step = step;
|
|
|
|
if(_use_gcs_snoop) {
|
|
const char *msg;
|
|
switch (step) {
|
|
case ACCELCAL_VEHICLE_POS_LEVEL:
|
|
msg = "level";
|
|
break;
|
|
case ACCELCAL_VEHICLE_POS_LEFT:
|
|
msg = "on its LEFT side";
|
|
break;
|
|
case ACCELCAL_VEHICLE_POS_RIGHT:
|
|
msg = "on its RIGHT side";
|
|
break;
|
|
case ACCELCAL_VEHICLE_POS_NOSEDOWN:
|
|
msg = "nose DOWN";
|
|
break;
|
|
case ACCELCAL_VEHICLE_POS_NOSEUP:
|
|
msg = "nose UP";
|
|
break;
|
|
case ACCELCAL_VEHICLE_POS_BACK:
|
|
msg = "on its BACK";
|
|
break;
|
|
default:
|
|
fail();
|
|
return;
|
|
}
|
|
_printf("Place vehicle %s and press any key.", msg);
|
|
_waiting_for_mavlink_ack = true;
|
|
}
|
|
}
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - _last_position_request_ms > AP_ACCELCAL_POSITION_REQUEST_INTERVAL_MS) {
|
|
_last_position_request_ms = now;
|
|
_gcs->send_accelcal_vehicle_position(step);
|
|
}
|
|
break;
|
|
}
|
|
case ACCEL_CAL_COLLECTING_SAMPLE:
|
|
// check for timeout
|
|
|
|
for(uint8_t i=0; (cal = get_calibrator(i)); i++) {
|
|
cal->check_for_timeout();
|
|
}
|
|
|
|
update_status();
|
|
|
|
if (_status == ACCEL_CAL_FAILED) {
|
|
fail();
|
|
}
|
|
return;
|
|
case ACCEL_CAL_SUCCESS:
|
|
// save
|
|
if (_saving) {
|
|
bool done = true;
|
|
for(uint8_t i=0; i<_num_clients; i++) {
|
|
if (client_active(i) && _clients[i]->_acal_get_saving()) {
|
|
done = false;
|
|
break;
|
|
}
|
|
}
|
|
if (done) {
|
|
success();
|
|
}
|
|
return;
|
|
} else {
|
|
for(uint8_t i=0; i<_num_clients; i++) {
|
|
if(client_active(i) && _clients[i]->_acal_get_fail()) {
|
|
fail();
|
|
return;
|
|
}
|
|
}
|
|
for(uint8_t i=0; i<_num_clients; i++) {
|
|
if(client_active(i)) {
|
|
_clients[i]->_acal_save_calibrations();
|
|
}
|
|
}
|
|
_saving = true;
|
|
}
|
|
return;
|
|
default:
|
|
case ACCEL_CAL_FAILED:
|
|
fail();
|
|
return;
|
|
}
|
|
} else if (_last_result != ACCEL_CAL_NOT_STARTED) {
|
|
// only continuously report if we have ever completed a calibration
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - _last_position_request_ms > AP_ACCELCAL_POSITION_REQUEST_INTERVAL_MS) {
|
|
_last_position_request_ms = now;
|
|
switch (_last_result) {
|
|
case ACCEL_CAL_SUCCESS:
|
|
_gcs->send_accelcal_vehicle_position(ACCELCAL_VEHICLE_POS_SUCCESS);
|
|
break;
|
|
case ACCEL_CAL_FAILED:
|
|
_gcs->send_accelcal_vehicle_position(ACCELCAL_VEHICLE_POS_FAILED);
|
|
break;
|
|
default:
|
|
// should never hit this state
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_AccelCal::start(GCS_MAVLINK *gcs)
|
|
{
|
|
if (gcs == nullptr || _started) {
|
|
return;
|
|
}
|
|
_start_collect_sample = false;
|
|
_num_active_calibrators = 0;
|
|
|
|
AccelCalibrator *cal;
|
|
for(uint8_t i=0; (cal = get_calibrator(i)); i++) {
|
|
cal->clear();
|
|
cal->start(ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID, 6, 0.5f);
|
|
_num_active_calibrators++;
|
|
}
|
|
|
|
_started = true;
|
|
_saving = false;
|
|
_gcs = gcs;
|
|
_use_gcs_snoop = true;
|
|
_last_position_request_ms = 0;
|
|
_step = 0;
|
|
|
|
_last_result = ACCEL_CAL_NOT_STARTED;
|
|
|
|
update_status();
|
|
}
|
|
|
|
void AP_AccelCal::success()
|
|
{
|
|
_printf("Calibration successful");
|
|
|
|
for(uint8_t i=0 ; i < _num_clients ; i++) {
|
|
_clients[i]->_acal_event_success();
|
|
}
|
|
|
|
_last_result = ACCEL_CAL_SUCCESS;
|
|
|
|
clear();
|
|
}
|
|
|
|
void AP_AccelCal::cancel()
|
|
{
|
|
_printf("Calibration cancelled");
|
|
|
|
for(uint8_t i=0 ; i < _num_clients ; i++) {
|
|
_clients[i]->_acal_event_cancellation();
|
|
}
|
|
|
|
_last_result = ACCEL_CAL_NOT_STARTED;
|
|
|
|
clear();
|
|
}
|
|
|
|
void AP_AccelCal::fail()
|
|
{
|
|
_printf("Calibration FAILED");
|
|
|
|
for(uint8_t i=0 ; i < _num_clients ; i++) {
|
|
_clients[i]->_acal_event_failure();
|
|
}
|
|
|
|
_last_result = ACCEL_CAL_FAILED;
|
|
|
|
clear();
|
|
}
|
|
|
|
void AP_AccelCal::clear()
|
|
{
|
|
if (!_started) {
|
|
return;
|
|
}
|
|
|
|
AccelCalibrator *cal;
|
|
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
|
|
cal->clear();
|
|
}
|
|
|
|
_step = 0;
|
|
_started = false;
|
|
_saving = false;
|
|
|
|
update_status();
|
|
}
|
|
|
|
void AP_AccelCal::collect_sample()
|
|
{
|
|
if (_status != ACCEL_CAL_WAITING_FOR_ORIENTATION) {
|
|
return;
|
|
}
|
|
|
|
for(uint8_t i=0; i<_num_clients; i++) {
|
|
if (client_active(i) && !_clients[i]->_acal_get_ready_to_sample()) {
|
|
_printf("Not ready to sample");
|
|
return;
|
|
}
|
|
}
|
|
|
|
AccelCalibrator *cal;
|
|
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
|
|
cal->collect_sample();
|
|
}
|
|
_start_collect_sample = false;
|
|
update_status();
|
|
}
|
|
|
|
void AP_AccelCal::register_client(AP_AccelCal_Client* client) {
|
|
if (client == nullptr || _num_clients >= AP_ACCELCAL_MAX_NUM_CLIENTS) {
|
|
return;
|
|
}
|
|
|
|
|
|
for(uint8_t i=0; i<_num_clients; i++) {
|
|
if(_clients[i] == client) {
|
|
return;
|
|
}
|
|
}
|
|
_clients[_num_clients] = client;
|
|
_num_clients++;
|
|
}
|
|
|
|
AccelCalibrator* AP_AccelCal::get_calibrator(uint8_t index) {
|
|
AccelCalibrator* ret;
|
|
for(uint8_t i=0; i<_num_clients; i++) {
|
|
for(uint8_t j=0 ; (ret = _clients[i]->_acal_get_calibrator(j)) ; j++) {
|
|
if (index == 0) {
|
|
return ret;
|
|
}
|
|
index--;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void AP_AccelCal::update_status() {
|
|
AccelCalibrator *cal;
|
|
|
|
if (!get_calibrator(0)) {
|
|
// no calibrators
|
|
_status = ACCEL_CAL_NOT_STARTED;
|
|
return;
|
|
}
|
|
|
|
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
|
|
if (cal->get_status() == ACCEL_CAL_FAILED) {
|
|
_status = ACCEL_CAL_FAILED; //fail if even one of the calibration has
|
|
return;
|
|
}
|
|
}
|
|
|
|
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
|
|
if (cal->get_status() == ACCEL_CAL_COLLECTING_SAMPLE) {
|
|
_status = ACCEL_CAL_COLLECTING_SAMPLE; // move to Collecting sample state if all the callibrators have
|
|
return;
|
|
}
|
|
}
|
|
|
|
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
|
|
if (cal->get_status() == ACCEL_CAL_WAITING_FOR_ORIENTATION) {
|
|
_status = ACCEL_CAL_WAITING_FOR_ORIENTATION; // move to waiting for user ack for orientation confirmation
|
|
return;
|
|
}
|
|
}
|
|
|
|
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
|
|
if (cal->get_status() == ACCEL_CAL_NOT_STARTED) {
|
|
_status = ACCEL_CAL_NOT_STARTED; // we haven't started if all the calibrators haven't
|
|
return;
|
|
}
|
|
}
|
|
|
|
_status = ACCEL_CAL_SUCCESS; // we have succeeded calibration if all the calibrators have
|
|
return;
|
|
}
|
|
|
|
bool AP_AccelCal::client_active(uint8_t client_num)
|
|
{
|
|
return (bool)_clients[client_num]->_acal_get_calibrator(0);
|
|
}
|
|
|
|
#if HAL_GCS_ENABLED
|
|
void AP_AccelCal::handle_command_ack(const mavlink_command_ack_t &packet)
|
|
{
|
|
if (!_waiting_for_mavlink_ack) {
|
|
return;
|
|
}
|
|
// this is support for the old, non-accelcal-specific calibration.
|
|
// The GCS is expected to send back a COMMAND_ACK when the vehicle
|
|
// is posed, but we placed no constraints on the result code or
|
|
// the command field in the ack packet. That meant that any ACK
|
|
// would move the cal process forward - and since we don't even
|
|
// check the source system/component here the process could easily
|
|
// fail due to other ACKs floating around the mavlink network.
|
|
// GCSs should be moved to using the non-gcs-snoop method. As a
|
|
// round-up:
|
|
// MAVProxy: command=1-6 depending on pose, result=1
|
|
// QGC: command=0, result=1
|
|
// MissionPlanner: uses new ACCELCAL_VEHICLE_POS
|
|
if (packet.command > 6) {
|
|
// not an acknowledgement for a vehicle position
|
|
return;
|
|
}
|
|
if (packet.result != MAV_RESULT_TEMPORARILY_REJECTED) {
|
|
// not an acknowledgement for a vehicle position
|
|
return;
|
|
}
|
|
_waiting_for_mavlink_ack = false;
|
|
_start_collect_sample = true;
|
|
}
|
|
|
|
bool AP_AccelCal::gcs_vehicle_position(float position)
|
|
{
|
|
_use_gcs_snoop = false;
|
|
|
|
if (_status == ACCEL_CAL_WAITING_FOR_ORIENTATION && is_equal((float) _step, position)) {
|
|
_start_collect_sample = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
// true if we are in a calibration process
|
|
bool AP_AccelCal::running(void) const
|
|
{
|
|
return _status == ACCEL_CAL_WAITING_FOR_ORIENTATION || _status == ACCEL_CAL_COLLECTING_SAMPLE;
|
|
}
|
|
#endif //HAL_INS_ACCELCAL_ENABLED
|