ardupilot/libraries/APM_RC/APM_RC_APM1.cpp

357 lines
10 KiB
C++

/*
APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
RC Input : PPM signal on IC4 pin
RC Output : 11 Servo outputs (standard 20ms frame)
Methods:
Init() : Initialization of interrupts an Timers
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
InputCh(ch) : Read a channel input value. ch=0..7
GetState() : Returns the state of the input. 1 => New radio frame to process
Automatically resets when we call InputCh to read channels
*/
#include "APM_RC_APM1.h"
#include <avr/interrupt.h>
#include "WProgram.h"
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
#else
// Variable definition for Input Capture interrupt
volatile uint16_t APM_RC_APM1::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
volatile uint8_t APM_RC_APM1::_radio_status=0;
/****************************************************
Input Capture Interrupt ICP4 => PPM signal read
****************************************************/
void APM_RC_APM1::_timer4_capt_cb(void)
{
static uint16_t ICR4_old;
static uint8_t PPM_Counter=0;
uint16_t Pulse;
uint16_t Pulse_Width;
Pulse=ICR4;
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000)
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse
}
else {
Pulse_Width=Pulse-ICR4_old; // Calculating pulse
}
if (Pulse_Width>8000) { // SYNC pulse?
PPM_Counter=0;
}
else {
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel?
_PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse.
if (PPM_Counter >= NUM_CHANNELS) {
_radio_status = 1;
}
}
}
ICR4_old = Pulse;
}
// Constructors ////////////////////////////////////////////////////////////////
APM_RC_APM1::APM_RC_APM1()
{
}
// Public Methods //////////////////////////////////////////////////////////////
void APM_RC_APM1::Init( Arduino_Mega_ISR_Registry * isr_reg )
{
isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb );
// Init PWM Timer 1
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
//Remember the registers not declared here remains zero by default...
TCCR1A =((1<<WGM11)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
OCR1A = 0xFFFF; // Init ODR registers to nil output signal
OCR1B = 0xFFFF;
OCR1C = 0xFFFF;
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
// Init PWM Timer 3
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
TCCR3A =((1<<WGM31));
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
OCR3A = 0xFFFF; // Init ODR registers to nil output signal
OCR3B = 0xFFFF;
OCR3C = 0xFFFF;
ICR3 = 40000; //50hz freq
// Init PWM Timer 5
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
TCCR5A =((1<<WGM51));
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
OCR5A = 0xFFFF; // Init ODR registers to nil output signal
OCR5B = 0xFFFF;
OCR5C = 0xFFFF;
ICR5 = 40000; //50hz freq
// Init PPM input and PWM Timer 4
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
TCCR4A =((1<<WGM40)|(1<<WGM41));
//Prescaler set to 8, that give us a resolution of 0.5us
// Input Capture rising edge
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
OCR4B = 0xFFFF; // Init OCR registers to nil output signal
OCR4C = 0xFFFF;
OCR4A = 40000; ///50hz freq.
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
}
void APM_RC_APM1::OutputCh(uint8_t ch, uint16_t pwm)
{
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
pwm<<=1; // pwm*2;
switch(ch)
{
case 0: OCR5B=pwm; break; //ch1
case 1: OCR5C=pwm; break; //ch2
case 2: OCR1B=pwm; break; //ch3
case 3: OCR1C=pwm; break; //ch4
case 4: OCR4C=pwm; break; //ch5
case 5: OCR4B=pwm; break; //ch6
case 6: OCR3C=pwm; break; //ch7
case 7: OCR3B=pwm; break; //ch8
case 8: OCR5A=pwm; break; //ch9, PL3
case 9: OCR1A=pwm; break; //ch10, PB5
case 10: OCR3A=pwm; break; //ch11, PE3
}
}
void APM_RC_APM1::enable_out(uint8_t ch)
{
switch(ch){
case 0: TCCR5A |= (1<<COM5B1); break; // CH_1 : OC5B
case 1: TCCR5A |= (1<<COM5C1); break; // CH_2 : OC5C
case 2: TCCR1A |= (1<<COM1B1); break; // CH_3 : OC1B
case 3: TCCR1A |= (1<<COM1C1); break; // CH_4 : OC1C
case 4: TCCR4A |= (1<<COM4C1); break; // CH_5 : OC4C
case 5: TCCR4A |= (1<<COM4B1); break; // CH_6 : OC4B
case 6: TCCR3A |= (1<<COM3C1); break; // CH_7 : OC3C
case 7: TCCR3A |= (1<<COM3B1); break; // CH_8 : OC3B
case 8: TCCR5A |= (1<<COM5A1); break; // CH_9 : OC5A
case 9: TCCR1A |= (1<<COM1A1); break; // CH_10: OC1A
case 10: TCCR3A |= (1<<COM3A1); break; // CH_11: OC3A
}
}
void APM_RC_APM1::disable_out(uint8_t ch)
{
switch(ch){
case 0: TCCR5A &= ~(1<<COM5B1); break; // CH_1 : OC5B
case 1: TCCR5A &= ~(1<<COM5C1); break; // CH_2 : OC5C
case 2: TCCR1A &= ~(1<<COM1B1); break; // CH_3 : OC1B
case 3: TCCR1A &= ~(1<<COM1C1); break; // CH_4 : OC1C
case 4: TCCR4A &= ~(1<<COM4C1); break; // CH_5 : OC4C
case 5: TCCR4A &= ~(1<<COM4B1); break; // CH_6 : OC4B
case 6: TCCR3A &= ~(1<<COM3C1); break; // CH_7 : OC3C
case 7: TCCR3A &= ~(1<<COM3B1); break; // CH_8 : OC3B
case 8: TCCR5A &= ~(1<<COM5A1); break; // CH_9 : OC5A
case 9: TCCR1A &= ~(1<<COM1A1); break; // CH_10: OC1A
case 10: TCCR3A &= ~(1<<COM3A1); break; // CH_11: OC3A
}
}
uint16_t APM_RC_APM1::InputCh(uint8_t ch)
{
uint16_t result;
if (_HIL_override[ch] != 0) {
return _HIL_override[ch];
}
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
result = _PWM_RAW[ch];
if (result != _PWM_RAW[ch]) {
result = _PWM_RAW[ch]; // if the results are different we make a third reading (this should be fine)
}
result >>= 1; // Because timer runs at 0.5us we need to do value/2
// Limit values to a valid range
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
_radio_status=0; // Radio channel read
return(result);
}
uint8_t APM_RC_APM1::GetState(void)
{
return(_radio_status);
}
// InstantPWM implementation
void APM_RC_APM1::Force_Out(void)
{
Force_Out0_Out1();
Force_Out2_Out3();
Force_Out6_Out7();
}
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
void APM_RC_APM1::Force_Out0_Out1(void)
{
if (TCNT5>5000) // We take care that there are not a pulse in the output
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
}
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
void APM_RC_APM1::Force_Out2_Out3(void)
{
if (TCNT1>5000)
TCNT1=39990;
}
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
void APM_RC_APM1::Force_Out6_Out7(void)
{
if (TCNT3>5000)
TCNT3=39990;
}
/* --------------------- OUTPUT SPEED CONTROL --------------------- */
// Output rate options:
#define OUTPUT_SPEED_50HZ 0
#define OUTPUT_SPEED_200HZ 1
#define OUTPUT_SPEED_400HZ 2
void APM_RC_APM1::SetFastOutputChannels(uint32_t chmask)
{
if ((chmask & ( _BV(CH_1) | _BV(CH_2) | _BV(CH_9))) != 0)
_set_speed_ch1_ch2_ch9(OUTPUT_SPEED_400HZ);
if ((chmask & ( _BV(CH_3) | _BV(CH_4) | _BV(CH_10))) != 0)
_set_speed_ch3_ch4_ch10(OUTPUT_SPEED_400HZ);
if ((chmask & ( _BV(CH_5) | _BV(CH_6))) != 0)
_set_speed_ch5_ch6(OUTPUT_SPEED_400HZ);
if ((chmask & ( _BV(CH_7) | _BV(CH_8) | _BV(CH_11))) != 0)
_set_speed_ch7_ch8_ch11(OUTPUT_SPEED_400HZ);
}
void APM_RC_APM1::_set_speed_ch1_ch2_ch9(uint8_t speed)
{
switch(speed) {
case OUTPUT_SPEED_400HZ:
ICR1= 5000;
break;
case OUTPUT_SPEED_200HZ:
ICR1= 10000;
break;
case OUTPUT_SPEED_50HZ:
default:
ICR1 = 40000;
break;
}
}
void APM_RC_APM1::_set_speed_ch3_ch4_ch10(uint8_t speed)
{
switch(speed) {
case OUTPUT_SPEED_400HZ:
ICR5= 5000;
break;
case OUTPUT_SPEED_200HZ:
ICR5= 10000;
break;
case OUTPUT_SPEED_50HZ:
default:
ICR5 = 40000;
break;
}
}
void APM_RC_APM1::_set_speed_ch7_ch8_ch11(uint8_t speed)
{
switch(speed) {
case OUTPUT_SPEED_400HZ:
ICR3 = 5000;
break;
case OUTPUT_SPEED_200HZ:
ICR3 = 10000;
break;
case OUTPUT_SPEED_50HZ:
default:
ICR3 = 40000;
break;
}
}
void APM_RC_APM1::_set_speed_ch5_ch6(uint8_t speed)
{
/* This function intentionally left blank:
* Can't change output speed of ch5 (OCR4B) and ch6 (OCR4C).
* Timer 4 period controlled by OCR4A, and used for input
* capture on ICR4.
* If the period of Timer 4 must be changed, the input capture
* code will have to be adjusted as well
*/
}
// allow HIL override of RC values
// A value of -1 means no change
// A value of 0 means no override, use the real RC values
bool APM_RC_APM1::setHIL(int16_t v[NUM_CHANNELS])
{
uint8_t sum = 0;
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
if (v[i] != -1) {
_HIL_override[i] = v[i];
}
if (_HIL_override[i] != 0) {
sum++;
}
}
_radio_status = 1;
if (sum == 0) {
return 0;
} else {
return 1;
}
}
void APM_RC_APM1::clearOverride(void)
{
for (uint8_t i=0; i<NUM_CHANNELS; i++) {
_HIL_override[i] = 0;
}
}
#endif // defined(ATMega1280)