ardupilot/libraries/AP_Compass/AP_Compass_LSM303D.cpp

431 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_Compass_LSM303D.h"
extern const AP_HAL::HAL &hal;
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL_Linux/GPIO.h>
#endif
#ifndef LSM303D_DRDY_M_PIN
#define LSM303D_DRDY_M_PIN -1
#endif
/* SPI protocol address bits */
#define DIR_READ (1<<7)
#define DIR_WRITE (0<<7)
#define ADDR_INCREMENT (1<<6)
/* register addresses: A: accel, M: mag, T: temp */
#define ADDR_WHO_AM_I 0x0F
#define WHO_I_AM 0x49
#define ADDR_OUT_TEMP_L 0x05
#define ADDR_OUT_TEMP_H 0x06
#define ADDR_STATUS_M 0x07
#define ADDR_OUT_X_L_M 0x08
#define ADDR_OUT_X_H_M 0x09
#define ADDR_OUT_Y_L_M 0x0A
#define ADDR_OUT_Y_H_M 0x0B
#define ADDR_OUT_Z_L_M 0x0C
#define ADDR_OUT_Z_H_M 0x0D
#define ADDR_INT_CTRL_M 0x12
#define ADDR_INT_SRC_M 0x13
#define ADDR_REFERENCE_X 0x1c
#define ADDR_REFERENCE_Y 0x1d
#define ADDR_REFERENCE_Z 0x1e
#define ADDR_STATUS_A 0x27
#define ADDR_OUT_X_L_A 0x28
#define ADDR_OUT_X_H_A 0x29
#define ADDR_OUT_Y_L_A 0x2A
#define ADDR_OUT_Y_H_A 0x2B
#define ADDR_OUT_Z_L_A 0x2C
#define ADDR_OUT_Z_H_A 0x2D
#define ADDR_CTRL_REG0 0x1F
#define ADDR_CTRL_REG1 0x20
#define ADDR_CTRL_REG2 0x21
#define ADDR_CTRL_REG3 0x22
#define ADDR_CTRL_REG4 0x23
#define ADDR_CTRL_REG5 0x24
#define ADDR_CTRL_REG6 0x25
#define ADDR_CTRL_REG7 0x26
#define ADDR_FIFO_CTRL 0x2e
#define ADDR_FIFO_SRC 0x2f
#define ADDR_IG_CFG1 0x30
#define ADDR_IG_SRC1 0x31
#define ADDR_IG_THS1 0x32
#define ADDR_IG_DUR1 0x33
#define ADDR_IG_CFG2 0x34
#define ADDR_IG_SRC2 0x35
#define ADDR_IG_THS2 0x36
#define ADDR_IG_DUR2 0x37
#define ADDR_CLICK_CFG 0x38
#define ADDR_CLICK_SRC 0x39
#define ADDR_CLICK_THS 0x3a
#define ADDR_TIME_LIMIT 0x3b
#define ADDR_TIME_LATENCY 0x3c
#define ADDR_TIME_WINDOW 0x3d
#define ADDR_ACT_THS 0x3e
#define ADDR_ACT_DUR 0x3f
#define REG1_RATE_BITS_A ((1<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_POWERDOWN_A ((0<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_3_125HZ_A ((0<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_6_25HZ_A ((0<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_RATE_12_5HZ_A ((0<<7) | (0<<6) | (1<<5) | (1<<4))
#define REG1_RATE_25HZ_A ((0<<7) | (1<<6) | (0<<5) | (0<<4))
#define REG1_RATE_50HZ_A ((0<<7) | (1<<6) | (0<<5) | (1<<4))
#define REG1_RATE_100HZ_A ((0<<7) | (1<<6) | (1<<5) | (0<<4))
#define REG1_RATE_200HZ_A ((0<<7) | (1<<6) | (1<<5) | (1<<4))
#define REG1_RATE_400HZ_A ((1<<7) | (0<<6) | (0<<5) | (0<<4))
#define REG1_RATE_800HZ_A ((1<<7) | (0<<6) | (0<<5) | (1<<4))
#define REG1_RATE_1600HZ_A ((1<<7) | (0<<6) | (1<<5) | (0<<4))
#define REG1_BDU_UPDATE (1<<3)
#define REG1_Z_ENABLE_A (1<<2)
#define REG1_Y_ENABLE_A (1<<1)
#define REG1_X_ENABLE_A (1<<0)
#define REG2_ANTIALIAS_FILTER_BW_BITS_A ((1<<7) | (1<<6))
#define REG2_AA_FILTER_BW_773HZ_A ((0<<7) | (0<<6))
#define REG2_AA_FILTER_BW_194HZ_A ((0<<7) | (1<<6))
#define REG2_AA_FILTER_BW_362HZ_A ((1<<7) | (0<<6))
#define REG2_AA_FILTER_BW_50HZ_A ((1<<7) | (1<<6))
#define REG2_FULL_SCALE_BITS_A ((1<<5) | (1<<4) | (1<<3))
#define REG2_FULL_SCALE_2G_A ((0<<5) | (0<<4) | (0<<3))
#define REG2_FULL_SCALE_4G_A ((0<<5) | (0<<4) | (1<<3))
#define REG2_FULL_SCALE_6G_A ((0<<5) | (1<<4) | (0<<3))
#define REG2_FULL_SCALE_8G_A ((0<<5) | (1<<4) | (1<<3))
#define REG2_FULL_SCALE_16G_A ((1<<5) | (0<<4) | (0<<3))
#define REG5_ENABLE_T (1<<7)
#define REG5_RES_HIGH_M ((1<<6) | (1<<5))
#define REG5_RES_LOW_M ((0<<6) | (0<<5))
#define REG5_RATE_BITS_M ((1<<4) | (1<<3) | (1<<2))
#define REG5_RATE_3_125HZ_M ((0<<4) | (0<<3) | (0<<2))
#define REG5_RATE_6_25HZ_M ((0<<4) | (0<<3) | (1<<2))
#define REG5_RATE_12_5HZ_M ((0<<4) | (1<<3) | (0<<2))
#define REG5_RATE_25HZ_M ((0<<4) | (1<<3) | (1<<2))
#define REG5_RATE_50HZ_M ((1<<4) | (0<<3) | (0<<2))
#define REG5_RATE_100HZ_M ((1<<4) | (0<<3) | (1<<2))
#define REG5_RATE_DO_NOT_USE_M ((1<<4) | (1<<3) | (0<<2))
#define REG6_FULL_SCALE_BITS_M ((1<<6) | (1<<5))
#define REG6_FULL_SCALE_2GA_M ((0<<6) | (0<<5))
#define REG6_FULL_SCALE_4GA_M ((0<<6) | (1<<5))
#define REG6_FULL_SCALE_8GA_M ((1<<6) | (0<<5))
#define REG6_FULL_SCALE_12GA_M ((1<<6) | (1<<5))
#define REG7_CONT_MODE_M ((0<<1) | (0<<0))
#define INT_CTRL_M 0x12
#define INT_SRC_M 0x13
#define LSM303D_MAG_DEFAULT_RANGE_GA 2
#define LSM303D_MAG_DEFAULT_RATE 100
AP_Compass_LSM303D::AP_Compass_LSM303D(AP_HAL::OwnPtr<AP_HAL::Device> dev)
: _dev(std::move(dev))
{
}
AP_Compass_Backend *AP_Compass_LSM303D::probe(AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_Compass_LSM303D *sensor = new AP_Compass_LSM303D(std::move(dev));
if (!sensor || !sensor->init(rotation)) {
delete sensor;
return nullptr;
}
return sensor;
}
uint8_t AP_Compass_LSM303D::_register_read(uint8_t reg)
{
uint8_t val = 0;
reg |= DIR_READ;
_dev->read_registers(reg, &val, 1);
return val;
}
bool AP_Compass_LSM303D::_block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
reg |= DIR_READ | ADDR_INCREMENT;
return _dev->read_registers(reg, buf, size);
}
void AP_Compass_LSM303D::_register_write(uint8_t reg, uint8_t val)
{
_dev->write_register(reg, val);
}
void AP_Compass_LSM303D::_register_modify(uint8_t reg, uint8_t clearbits, uint8_t setbits)
{
uint8_t val;
val = _register_read(reg);
val &= ~clearbits;
val |= setbits;
_register_write(reg, val);
}
/**
* Return true if the LSM303D has new data available for both the mag and
* the accels.
*/
bool AP_Compass_LSM303D::_data_ready()
{
return _drdy_pin_m == nullptr || (_drdy_pin_m->read() != 0);
}
// Read Sensor data
bool AP_Compass_LSM303D::_read_sample()
{
struct PACKED {
uint8_t status;
int16_t x;
int16_t y;
int16_t z;
} rx;
if (_register_read(ADDR_CTRL_REG7) != _reg7_expected) {
hal.console->printf("LSM303D _read_data_transaction_accel: _reg7_expected unexpected\n");
return false;
}
if (!_data_ready()) {
return false;
}
if (!_block_read(ADDR_STATUS_M, (uint8_t *) &rx, sizeof(rx))) {
return false;
}
/* check for overrun */
if ((rx.status & 0x70) != 0) {
return false;
}
if (rx.x == 0 && rx.y == 0 && rx.z == 0) {
return false;
}
_mag_x = rx.x;
_mag_y = rx.y;
_mag_z = rx.z;
return true;
}
bool AP_Compass_LSM303D::init(enum Rotation rotation)
{
if (LSM303D_DRDY_M_PIN >= 0) {
_drdy_pin_m = hal.gpio->channel(LSM303D_DRDY_M_PIN);
_drdy_pin_m->mode(HAL_GPIO_INPUT);
}
bool success = _hardware_init();
if (!success) {
return false;
}
_initialised = true;
/* register the compass instance in the frontend */
_dev->set_device_type(DEVTYPE_LSM303D);
if (!register_compass(_dev->get_bus_id(), _compass_instance)) {
return false;
}
set_dev_id(_compass_instance, _dev->get_bus_id());
set_rotation(_compass_instance, rotation);
// read at 91Hz. We don't run at 100Hz as fetching data too fast can cause some very
// odd periodic changes in the output data
_dev->register_periodic_callback(11000, FUNCTOR_BIND_MEMBER(&AP_Compass_LSM303D::_update, void));
return true;
}
bool AP_Compass_LSM303D::_hardware_init()
{
_dev->get_semaphore()->take_blocking();
// initially run the bus at low speed
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
// Test WHOAMI
uint8_t whoami = _register_read(ADDR_WHO_AM_I);
if (whoami != WHO_I_AM) {
goto fail_whoami;
}
uint8_t tries;
for (tries = 0; tries < 5; tries++) {
// ensure the chip doesn't interpret any other bus traffic as I2C
_disable_i2c();
/* enable mag */
_reg7_expected = REG7_CONT_MODE_M;
_register_write(ADDR_CTRL_REG7, _reg7_expected);
_register_write(ADDR_CTRL_REG5, REG5_RES_HIGH_M);
// DRDY on MAG on INT2
_register_write(ADDR_CTRL_REG4, 0x04);
_mag_set_range(LSM303D_MAG_DEFAULT_RANGE_GA);
_mag_set_samplerate(LSM303D_MAG_DEFAULT_RATE);
hal.scheduler->delay(10);
if (_data_ready()) {
break;
}
}
if (tries == 5) {
hal.console->printf("Failed to boot LSM303D 5 times\n");
goto fail_tries;
}
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
_dev->get_semaphore()->give();
return true;
fail_tries:
fail_whoami:
_dev->get_semaphore()->give();
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
return false;
}
void AP_Compass_LSM303D::_update()
{
if (!_read_sample()) {
return;
}
Vector3f raw_field = Vector3f(_mag_x, _mag_y, _mag_z) * _mag_range_scale;
accumulate_sample(raw_field, _compass_instance, 10);
}
// Read Sensor data
void AP_Compass_LSM303D::read()
{
if (!_initialised) {
return;
}
drain_accumulated_samples(_compass_instance);
}
void AP_Compass_LSM303D::_disable_i2c()
{
// TODO: use the register names
uint8_t a = _register_read(0x02);
_register_write(0x02, (0x10 | a));
a = _register_read(0x02);
_register_write(0x02, (0xF7 & a));
a = _register_read(0x15);
_register_write(0x15, (0x80 | a));
a = _register_read(0x02);
_register_write(0x02, (0xE7 & a));
}
bool AP_Compass_LSM303D::_mag_set_range(uint8_t max_ga)
{
uint8_t setbits = 0;
uint8_t clearbits = REG6_FULL_SCALE_BITS_M;
float new_scale_ga_digit = 0.0f;
if (max_ga == 0) {
max_ga = 12;
}
if (max_ga <= 2) {
_mag_range_ga = 2;
setbits |= REG6_FULL_SCALE_2GA_M;
new_scale_ga_digit = 0.080f;
} else if (max_ga <= 4) {
_mag_range_ga = 4;
setbits |= REG6_FULL_SCALE_4GA_M;
new_scale_ga_digit = 0.160f;
} else if (max_ga <= 8) {
_mag_range_ga = 8;
setbits |= REG6_FULL_SCALE_8GA_M;
new_scale_ga_digit = 0.320f;
} else if (max_ga <= 12) {
_mag_range_ga = 12;
setbits |= REG6_FULL_SCALE_12GA_M;
new_scale_ga_digit = 0.479f;
} else {
return false;
}
_mag_range_scale = new_scale_ga_digit;
_register_modify(ADDR_CTRL_REG6, clearbits, setbits);
return true;
}
bool AP_Compass_LSM303D::_mag_set_samplerate(uint16_t frequency)
{
uint8_t setbits = 0;
uint8_t clearbits = REG5_RATE_BITS_M;
if (frequency == 0) {
frequency = 100;
}
if (frequency <= 25) {
setbits |= REG5_RATE_25HZ_M;
_mag_samplerate = 25;
} else if (frequency <= 50) {
setbits |= REG5_RATE_50HZ_M;
_mag_samplerate = 50;
} else if (frequency <= 100) {
setbits |= REG5_RATE_100HZ_M;
_mag_samplerate = 100;
} else {
return false;
}
_register_modify(ADDR_CTRL_REG5, clearbits, setbits);
return true;
}