ardupilot/libraries/AP_HAL_AVR/Scheduler.cpp

222 lines
6.1 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2)
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include "Scheduler.h"
#include "ISRRegistry.h"
using namespace AP_HAL_AVR;
extern const AP_HAL::HAL& hal;
/* AVRScheduler timer interrupt period is controlled by TCNT2.
* 256-62 gives a 1kHz period. */
#define RESET_TCNT2_VALUE (256 - 62)
/* Static AVRScheduler variables: */
AVRTimer AVRScheduler::_timer;
AP_HAL::TimedProc AVRScheduler::_failsafe = NULL;
volatile bool AVRScheduler::_timer_suspended = false;
AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
uint8_t AVRScheduler::_num_timer_procs = 0;
bool AVRScheduler::_in_timer_proc = false;
AVRScheduler::AVRScheduler() :
_delay_cb(NULL),
_min_delay_cb_ms(65535),
_nested_atomic_ctr(0)
{}
void AVRScheduler::init(void* _isrregistry) {
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry;
/* _timer: sets up timer hardware to Arduino defaults, and
* uses TIMER0 to implement millis & micros */
_timer.init();
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */
TIMSK2 = 0; /* Disable timer interrupt */
TCCR2A = 0; /* Normal counting mode */
TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */
TCNT2 = 0; /* Set count to 0 */
TIFR2 = _BV(TOV2); /* Clear pending interrupts */
TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/
/* Register _timer_event to trigger on overflow */
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event);
}
uint32_t AVRScheduler::micros() {
return _timer.micros();
}
uint32_t AVRScheduler::millis() {
return _timer.millis();
}
void AVRScheduler::delay_microseconds(uint16_t us) {
_timer.delay_microseconds(us);
}
void AVRScheduler::delay(uint16_t ms)
{
uint32_t start = _timer.micros();
while (ms > 0) {
while ((_timer.micros() - start) >= 1000) {
ms--;
if (ms == 0) break;
start += 1000;
}
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
void AVRScheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms) {
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void AVRScheduler::register_timer_process(AP_HAL::TimedProc proc) {
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) {
/* this write to _timer_proc can be outside the critical section
* because that memory won't be used until _num_timer_procs is
* incremented. */
_timer_proc[_num_timer_procs] = proc;
/* _num_timer_procs is used from interrupt, and multiple bytes long. */
cli();
_num_timer_procs++;
sei();
}
}
void AVRScheduler::register_timer_failsafe(
AP_HAL::TimedProc failsafe, uint32_t period_us) {
/* XXX Assert period_us == 1000 */
_failsafe = failsafe;
}
void AVRScheduler::suspend_timer_procs() {
_timer_suspended = true;
}
void AVRScheduler::resume_timer_procs() {
_timer_suspended = false;
}
void AVRScheduler::_timer_event() {
// we enable the interrupt again immediately and also enable
// interrupts. This allows other time critical interrupts to
// run (such as the serial receive interrupt). We catch the
// timer calls taking too long using _in_timer_call.
// This approach also gives us a nice uniform spacing between
// timer calls
TCNT2 = RESET_TCNT2_VALUE;
sei();
uint32_t tnow = _timer.micros();
if (_in_timer_proc) {
// the timer calls took longer than the period of the
// timer. This is bad, and may indicate a serious
// driver failure. We can't just call the drivers
// again, as we could run out of stack. So we only
// call the _failsafe call. It's job is to detect if
// the drivers or the main loop are indeed dead and to
// activate whatever failsafe it thinks may help if
// need be. We assume the failsafe code can't
// block. If it does then we will recurse and die when
// we run out of stack
if (_failsafe != NULL) {
_failsafe(tnow);
}
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] != NULL) {
_timer_proc[i](tnow);
}
}
}
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe(tnow);
}
_in_timer_proc = false;
}
void AVRScheduler::begin_atomic() {
_nested_atomic_ctr++;
cli();
}
void AVRScheduler::end_atomic() {
if (_nested_atomic_ctr == 0) {
hal.uartA->println_P(PSTR("ATOMIC NESTING ERROR"));
return;
}
_nested_atomic_ctr--;
if (_nested_atomic_ctr == 0) {
sei();
}
}
void AVRScheduler::panic(const prog_char_t* errormsg) {
/* Suspend timer processes. We still want the timer event to go off
* to run the _failsafe code, however. */
_timer_suspended = true;
/* Print the error message on both ports */
hal.uartA->println_P(errormsg);
hal.uartC->println_P(errormsg);
/* Spin forever. */
for(;;);
}
void AVRScheduler::reboot() {
hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n"));
hal.scheduler->delay(100);
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
/* The APM2 bootloader will reset the watchdog shortly after
* starting, so we can use the watchdog to force a reboot
*/
cli();
wdt_enable(WDTO_15MS);
for(;;);
#else
cli();
/* Making a null pointer call will cause all AVRs to reboot
* but they may not come back alive properly - we need to setup
* the IO the way the bootloader would.
*/
void (*fn)(void) = NULL;
fn();
for(;;);
#endif
}
#endif