mirror of https://github.com/ArduPilot/ardupilot
184 lines
4.6 KiB
C++
184 lines
4.6 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
// Copyright 2010 Michael Smith, all rights reserved.
|
|
|
|
// This library is free software; you can redistribute it and / or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
|
|
// Derived closely from:
|
|
/****************************************
|
|
* 3D Vector Classes
|
|
* By Bill Perone (billperone@yahoo.com)
|
|
* Original: 9-16-2002
|
|
* Revised: 19-11-2003
|
|
* 11-12-2003
|
|
* 18-12-2003
|
|
* 06-06-2004
|
|
*
|
|
* © 2003, This code is provided "as is" and you can use it freely as long as
|
|
* credit is given to Bill Perone in the application it is used in
|
|
*
|
|
* Notes:
|
|
* if a*b = 0 then a & b are orthogonal
|
|
* a%b = -b%a
|
|
* a*(b%c) = (a%b)*c
|
|
* a%b = a(cast to matrix)*b
|
|
* (a%b).length() = area of parallelogram formed by a & b
|
|
* (a%b).length() = a.length()*b.length() * sin(angle between a & b)
|
|
* (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0
|
|
* a * (b%c) = volume of parallelpiped formed by a, b, c
|
|
* vector triple product: a%(b%c) = b*(a*c) - c*(a*b)
|
|
* scalar triple product: a*(b%c) = c*(a%b) = b*(c%a)
|
|
* vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c)
|
|
* if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0
|
|
* vectors a1...an are linearly dependant if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0
|
|
* or if the matrix (A) * b = 0
|
|
*
|
|
****************************************/
|
|
|
|
#ifndef VECTOR3_H
|
|
#define VECTOR3_H
|
|
|
|
#include <math.h>
|
|
|
|
template <typename T>
|
|
class Vector3
|
|
{
|
|
public:
|
|
T x, y, z;
|
|
|
|
// trivial ctor
|
|
Vector3<T>() {}
|
|
|
|
// setting ctor
|
|
Vector3<T>(const T x0, const T y0, const T z0): x(x0), y(y0), z(z0) {}
|
|
|
|
// function call operator
|
|
void operator ()(const T x0, const T y0, const T z0)
|
|
{ x= x0; y= y0; z= z0; }
|
|
|
|
// test for equality
|
|
bool operator==(const Vector3<T> &v)
|
|
{ return (x==v.x && y==v.y && z==v.z); }
|
|
|
|
// test for inequality
|
|
bool operator!=(const Vector3<T> &v)
|
|
{ return (x!=v.x || y!=v.y || z!=v.z); }
|
|
|
|
// negation
|
|
Vector3<T> operator -(void) const
|
|
{ return Vector3<T>(-x,-y,-z); }
|
|
|
|
// addition
|
|
Vector3<T> operator +(const Vector3<T> &v) const
|
|
{ return Vector3<T>(x+v.x, y+v.y, z+v.z); }
|
|
|
|
// subtraction
|
|
Vector3<T> operator -(const Vector3<T> &v) const
|
|
{ return Vector3<T>(x-v.x, y-v.y, z-v.z); }
|
|
|
|
// uniform scaling
|
|
Vector3<T> operator *(const T num) const
|
|
{
|
|
Vector3<T> temp(*this);
|
|
return temp*=num;
|
|
}
|
|
|
|
// uniform scaling
|
|
Vector3<T> operator /(const T num) const
|
|
{
|
|
Vector3<T> temp(*this);
|
|
return temp/=num;
|
|
}
|
|
|
|
// addition
|
|
Vector3<T> &operator +=(const Vector3<T> &v)
|
|
{
|
|
x+=v.x; y+=v.y; z+=v.z;
|
|
return *this;
|
|
}
|
|
|
|
// subtraction
|
|
Vector3<T> &operator -=(const Vector3<T> &v)
|
|
{
|
|
x-=v.x; y-=v.y; z-=v.z;
|
|
return *this;
|
|
}
|
|
|
|
// uniform scaling
|
|
Vector3<T> &operator *=(const T num)
|
|
{
|
|
x*=num; y*=num; z*=num;
|
|
return *this;
|
|
}
|
|
|
|
// uniform scaling
|
|
Vector3<T> &operator /=(const T num)
|
|
{
|
|
x/=num; y/=num; z/=num;
|
|
return *this;
|
|
}
|
|
|
|
// dot product
|
|
T operator *(const Vector3<T> &v) const
|
|
{ return x*v.x + y*v.y + z*v.z; }
|
|
|
|
// cross product
|
|
Vector3<T> operator %(const Vector3<T> &v) const
|
|
{
|
|
Vector3<T> temp(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x);
|
|
return temp;
|
|
}
|
|
|
|
// gets the length of this vector squared
|
|
T length_squared() const
|
|
{ return (T)(*this * *this); }
|
|
|
|
// gets the length of this vector
|
|
float length() const
|
|
{ return (T)sqrt(*this * *this); }
|
|
|
|
// normalizes this vector
|
|
void normalize()
|
|
{ *this/=length(); }
|
|
|
|
// returns the normalized version of this vector
|
|
Vector3<T> normalized() const
|
|
{ return *this/length(); }
|
|
|
|
// reflects this vector about n
|
|
void reflect(const Vector3<T> &n)
|
|
{
|
|
Vector3<T> orig(*this);
|
|
project(n);
|
|
*this= *this*2 - orig;
|
|
}
|
|
|
|
// projects this vector onto v
|
|
void project(const Vector3<T> &v)
|
|
{ *this= v * (*this * v)/(v*v); }
|
|
|
|
// returns this vector projected onto v
|
|
Vector3<T> projected(const Vector3<T> &v)
|
|
{ return v * (*this * v)/(v*v); }
|
|
|
|
// computes the angle between 2 arbitrary vectors
|
|
static inline T angle(const Vector3<T> &v1, const Vector3<T> &v2)
|
|
{ return (T)acosf((v1*v2) / (v1.length()*v2.length())); }
|
|
|
|
// computes the angle between 2 arbitrary normalized vectors
|
|
static inline T angle_normalized(const Vector3<T> &v1, const Vector3<T> &v2)
|
|
{ return (T)acosf(v1*v2); }
|
|
|
|
};
|
|
|
|
typedef Vector3<int> Vector3i;
|
|
typedef Vector3<unsigned int> Vector3ui;
|
|
typedef Vector3<long> Vector3l;
|
|
typedef Vector3<unsigned long> Vector3ul;
|
|
typedef Vector3<float> Vector3f;
|
|
|
|
#endif // VECTOR3_H
|