mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 02:48:28 -04:00
240 lines
7.3 KiB
C++
240 lines
7.3 KiB
C++
/*
|
|
driver for RAMTRON FRAM persistent memory devices. These are used
|
|
for parameter and waypoint storage on most FMUv1, FMUv2, FMUv3 and FMUv4
|
|
boards
|
|
*/
|
|
|
|
#include "AP_RAMTRON.h"
|
|
#include <AP_Math/crc.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
|
|
// register numbers
|
|
static const uint8_t RAMTRON_RDID = 0x9f;
|
|
static const uint8_t RAMTRON_READ = 0x03;
|
|
static const uint8_t RAMTRON_WREN = 0x06;
|
|
static const uint8_t RAMTRON_WRITE = 0x02;
|
|
|
|
#define RAMTRON_RETRIES 10
|
|
#define RAMTRON_DELAY_MS 10
|
|
|
|
/*
|
|
list of supported devices. Thanks to NuttX ramtron driver
|
|
*/
|
|
const AP_RAMTRON::ramtron_id AP_RAMTRON::ramtron_ids[] = {
|
|
{ 0x21, 0x00, 16, 2, RDID_type::Cypress }, // FM25V01
|
|
{ 0x21, 0x08, 16, 2, RDID_type::Cypress }, // FM25V01A
|
|
{ 0x22, 0x00, 32, 2, RDID_type::Cypress }, // FM25V02
|
|
{ 0x22, 0x08, 32, 2, RDID_type::Cypress }, // FM25V02A
|
|
{ 0x22, 0x48, 32, 2, RDID_type::Cypress }, // FM25V02A - Extended Temperature Version
|
|
{ 0x22, 0x01, 32, 2, RDID_type::Cypress }, // FM25VN02
|
|
{ 0x23, 0x00, 64, 2, RDID_type::Cypress }, // FM25V05
|
|
{ 0x23, 0x01, 64, 2, RDID_type::Cypress }, // FM25VN05
|
|
{ 0x24, 0x00, 128, 3, RDID_type::Cypress }, // FM25V10
|
|
{ 0x24, 0x01, 128, 3, RDID_type::Cypress }, // FM25VN10
|
|
{ 0x25, 0x08, 256, 3, RDID_type::Cypress }, // FM25V20A
|
|
{ 0x26, 0x08, 512, 3, RDID_type::Cypress }, // CY15B104Q
|
|
|
|
{ 0x27, 0x03, 128, 3, RDID_type::Fujitsu }, // MB85RS1MT
|
|
{ 0x05, 0x09, 32, 2, RDID_type::Fujitsu }, // MB85RS256B
|
|
{ 0x24, 0x03, 16, 2, RDID_type::Fujitsu }, // MB85RS128TY
|
|
{ 0x25, 0x03, 32, 2, RDID_type::Fujitsu }, // MB85RS256TY
|
|
|
|
{ 0x22, 0x00, 16, 2, RDID_type::Petabytes }, // PB85RS128C
|
|
{ 0x24, 0x00, 256, 3, RDID_type::Petabytes }, // PB85RS2MC
|
|
};
|
|
|
|
// initialise the driver
|
|
bool AP_RAMTRON::init(void)
|
|
{
|
|
dev = hal.spi->get_device("ramtron");
|
|
if (!dev) {
|
|
DEV_PRINTF("No RAMTRON device\n");
|
|
return false;
|
|
}
|
|
|
|
struct cypress_rdid {
|
|
uint8_t manufacturer[6];
|
|
uint8_t memory;
|
|
uint8_t id1;
|
|
uint8_t id2;
|
|
};
|
|
struct fujitsu_rdid {
|
|
uint8_t manufacturer[2];
|
|
uint8_t id1;
|
|
uint8_t id2;
|
|
};
|
|
struct petabytes_rdid {
|
|
uint8_t manufacturer[2];
|
|
uint8_t id1;
|
|
uint8_t id2;
|
|
};
|
|
|
|
uint8_t rdid[sizeof(cypress_rdid)];
|
|
|
|
{
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
if (!dev->read_registers(RAMTRON_RDID, rdid, sizeof(rdid))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (uint8_t i = 0; i < ARRAY_SIZE(ramtron_ids); i++) {
|
|
if (ramtron_ids[i].rdid_type == RDID_type::Cypress) {
|
|
const cypress_rdid *cypress = (const cypress_rdid *)rdid;
|
|
if (ramtron_ids[i].id1 == cypress->id1 &&
|
|
ramtron_ids[i].id2 == cypress->id2) {
|
|
id = i;
|
|
break;
|
|
}
|
|
} else if (ramtron_ids[i].rdid_type == RDID_type::Fujitsu) {
|
|
const fujitsu_rdid *fujitsu = (const fujitsu_rdid *)rdid;
|
|
if (ramtron_ids[i].id1 == fujitsu->id1 &&
|
|
ramtron_ids[i].id2 == fujitsu->id2) {
|
|
id = i;
|
|
break;
|
|
}
|
|
} else if (ramtron_ids[i].rdid_type == RDID_type::Petabytes) {
|
|
const petabytes_rdid *petabytes = (const petabytes_rdid *)rdid;
|
|
if (petabytes->manufacturer[0] == 0x62 &&
|
|
petabytes->manufacturer[1] == 0x8C &&
|
|
ramtron_ids[i].id1 == petabytes->id1 &&
|
|
ramtron_ids[i].id2 == petabytes->id2) {
|
|
id = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (id == UINT8_MAX) {
|
|
DEV_PRINTF("Unknown RAMTRON device\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
send a command and offset
|
|
*/
|
|
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset) const
|
|
{
|
|
if (ramtron_ids[id].addrlen == 3) {
|
|
uint8_t b[4] = { cmd, uint8_t((offset>>16)&0xFF), uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) };
|
|
dev->transfer(b, sizeof(b), nullptr, 0);
|
|
} else /* len 2 */ {
|
|
uint8_t b[3] = { cmd, uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) };
|
|
dev->transfer(b, sizeof(b), nullptr, 0);
|
|
}
|
|
}
|
|
|
|
// read from device
|
|
bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
|
|
{
|
|
// Don't allow reads outside of the FRAM memory.
|
|
// NOTE: The FRAM devices will wrap back to address 0x0000 if they read past
|
|
// the end of their internal memory, so while we'll get data back, it won't
|
|
// be what we expect.
|
|
if ((size > get_size()) ||
|
|
(offset > (get_size() - size))) {
|
|
return false;
|
|
}
|
|
const uint8_t maxread = 128;
|
|
while (size > maxread) {
|
|
if (!read(offset, buf, maxread)) {
|
|
return false;
|
|
}
|
|
offset += maxread;
|
|
buf += maxread;
|
|
size -= maxread;
|
|
}
|
|
|
|
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
|
|
if (r != 0) {
|
|
hal.scheduler->delay(RAMTRON_DELAY_MS);
|
|
}
|
|
/*
|
|
transfer each block twice and compare with a crc. This is to
|
|
prevent transient errors from causing parameter corruption
|
|
*/
|
|
{
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
dev->set_chip_select(true);
|
|
send_offset(RAMTRON_READ, offset);
|
|
dev->transfer(nullptr, 0, buf, size);
|
|
dev->set_chip_select(false);
|
|
}
|
|
|
|
uint32_t crc1 = crc_crc32(0, buf, size);
|
|
|
|
{
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
dev->set_chip_select(true);
|
|
send_offset(RAMTRON_READ, offset);
|
|
dev->transfer(nullptr, 0, buf, size);
|
|
dev->set_chip_select(false);
|
|
}
|
|
uint32_t crc2 = crc_crc32(0, buf, size);
|
|
|
|
if (crc1 == crc2) {
|
|
// all good
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// write to device
|
|
bool AP_RAMTRON::write(uint32_t offset, const uint8_t *buf, uint32_t size)
|
|
{
|
|
// Don't allow writes outside of the FRAM memory.
|
|
// NOTE: The FRAM devices will wrap back to address 0x0000 if they write past
|
|
// the end of their internal memory, so we could accidentally overwrite the
|
|
// wrong memory location.
|
|
if ((size > get_size()) ||
|
|
(offset > (get_size() - size))) {
|
|
return false;
|
|
}
|
|
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
|
|
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
|
|
if (r != 0) {
|
|
hal.scheduler->delay(RAMTRON_DELAY_MS);
|
|
}
|
|
|
|
// we need to enable writes every time. The WREN bit is
|
|
// automatically reset on completion of the write call
|
|
dev->set_chip_select(true);
|
|
dev->transfer(&RAMTRON_WREN, 1, nullptr, 0);
|
|
dev->set_chip_select(false);
|
|
|
|
dev->set_chip_select(true);
|
|
send_offset(RAMTRON_WRITE, offset);
|
|
dev->transfer(buf, size, nullptr, 0);
|
|
dev->set_chip_select(false);
|
|
|
|
/*
|
|
verify first 32 bytes of every write using a crc
|
|
*/
|
|
uint8_t rbuf[32] {};
|
|
const uint8_t nverify = MIN(size, sizeof(rbuf));
|
|
uint32_t crc1 = crc_crc32(0, buf, nverify);
|
|
|
|
dev->set_chip_select(true);
|
|
send_offset(RAMTRON_READ, offset);
|
|
dev->transfer(nullptr, 0, rbuf, nverify);
|
|
dev->set_chip_select(false);
|
|
|
|
uint32_t crc2 = crc_crc32(0, rbuf, nverify);
|
|
|
|
if (crc1 == crc2) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|