ardupilot/libraries/AP_AHRS/AP_AHRS_View.cpp
Peter Barker 9dbd9d1e06 AP_AHRS: call INS update in AP_AHRS::update w/o holding data sem
We shouldn't be holding the data semaphore while waiting for the samples
- lots of things might be unnecessarily blocked

DCM's update function doesn't need to take the semaphore as it is
already taken by AP_AHRS
2021-08-31 14:28:53 +10:00

105 lines
3.1 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AHRS View class - for creating a 2nd view of the vehicle attitude
*
*/
#include "AP_AHRS_View.h"
#include <stdio.h>
AP_AHRS_View::AP_AHRS_View(AP_AHRS &_ahrs, enum Rotation _rotation, float pitch_trim_deg) :
rotation(_rotation),
ahrs(_ahrs)
{
switch (rotation) {
case ROTATION_NONE:
y_angle = 0;
break;
case ROTATION_PITCH_90:
y_angle = 90;
break;
case ROTATION_PITCH_270:
y_angle = 270;
break;
default:
AP_HAL::panic("Unsupported AHRS view %u\n", (unsigned)rotation);
}
_pitch_trim_deg = pitch_trim_deg;
// Add pitch trim
rot_view.from_euler(0, radians(wrap_360(y_angle + pitch_trim_deg)), 0);
rot_view_T = rot_view;
rot_view_T.transpose();
// setup initial state
update();
}
// apply pitch trim
void AP_AHRS_View::set_pitch_trim(float trim_deg) {
_pitch_trim_deg = trim_deg;
rot_view.from_euler(0, radians(wrap_360(y_angle + _pitch_trim_deg)), 0);
rot_view_T = rot_view;
rot_view_T.transpose();
};
// update state
void AP_AHRS_View::update()
{
rot_body_to_ned = ahrs.get_rotation_body_to_ned();
gyro = ahrs.get_gyro();
if (!is_zero(y_angle + _pitch_trim_deg)) {
rot_body_to_ned = rot_body_to_ned * rot_view_T;
gyro = rot_view * gyro;
}
rot_body_to_ned.to_euler(&roll, &pitch, &yaw);
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0) {
yaw_sensor += 36000;
}
ahrs.calc_trig(rot_body_to_ned,
trig.cos_roll, trig.cos_pitch, trig.cos_yaw,
trig.sin_roll, trig.sin_pitch, trig.sin_yaw);
}
// return a smoothed and corrected gyro vector using the latest ins data (which may not have been consumed by the EKF yet)
Vector3f AP_AHRS_View::get_gyro_latest(void) const {
Vector3f gyro_latest = ahrs.get_gyro_latest();
gyro_latest.rotate(rotation);
return gyro_latest;
}
// rotate a 2D vector from earth frame to body frame
Vector2f AP_AHRS_View::earth_to_body2D(const Vector2f &ef) const
{
return Vector2f(ef.x * trig.cos_yaw + ef.y * trig.sin_yaw,
-ef.x * trig.sin_yaw + ef.y * trig.cos_yaw);
}
// rotate a 2D vector from earth frame to body frame
Vector2f AP_AHRS_View::body_to_earth2D(const Vector2f &bf) const
{
return Vector2f(bf.x * trig.cos_yaw - bf.y * trig.sin_yaw,
bf.x * trig.sin_yaw + bf.y * trig.cos_yaw);
}