ardupilot/libraries/AC_PID/AC_PID_2D.cpp
2021-11-23 13:47:10 +09:00

211 lines
6.2 KiB
C++

/// @file AC_PID_2D.cpp
/// @brief Generic PID algorithm
#include <AP_Math/AP_Math.h>
#include "AC_PID_2D.h"
#define AC_PID_2D_FILT_E_HZ_DEFAULT 20.0f // default input filter frequency
#define AC_PID_2D_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency
#define AC_PID_2D_FILT_D_HZ_MIN 0.005f // minimum input filter frequency
const AP_Param::GroupInfo AC_PID_2D::var_info[] = {
// @Param: P
// @DisplayName: PID Proportional Gain
// @Description: P Gain which produces an output value that is proportional to the current error value
AP_GROUPINFO("P", 0, AC_PID_2D, _kp, 0),
// @Param: I
// @DisplayName: PID Integral Gain
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
AP_GROUPINFO("I", 1, AC_PID_2D, _ki, 0),
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO("IMAX", 2, AC_PID_2D, _kimax, 0),
// @Param: FLTE
// @DisplayName: PID Input filter frequency in Hz
// @Description: Input filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTE", 3, AC_PID_2D, _filt_E_hz, AC_PID_2D_FILT_E_HZ_DEFAULT),
// @Param: D
// @DisplayName: PID Derivative Gain
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
AP_GROUPINFO("D", 4, AC_PID_2D, _kd, 0),
// @Param: FLTD
// @DisplayName: D term filter frequency in Hz
// @Description: D term filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTD", 5, AC_PID_2D, _filt_D_hz, AC_PID_2D_FILT_D_HZ_DEFAULT),
// @Param: FF
// @DisplayName: PID Feed Forward Gain
// @Description: FF Gain which produces an output that is proportional to the magnitude of the target
AP_GROUPINFO("FF", 6, AC_PID_2D, _kff, 0),
AP_GROUPEND
};
// Constructor
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
_dt(dt)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
_kp = initial_kP;
_ki = initial_kI;
_kd = initial_kD;
_kff = initial_kFF;
_kimax = fabsf(initial_imax);
filt_E_hz(initial_filt_E_hz);
filt_D_hz(initial_filt_D_hz);
// reset input filter to first value received
_reset_filter = true;
}
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated if it does not increase in the direction of the limit vector
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit)
{
// don't process inf or NaN
if (target.is_nan() || target.is_inf() ||
measurement.is_nan() || measurement.is_inf()) {
return Vector2f{};
}
_target = target;
// reset input filter to value received
if (_reset_filter) {
_reset_filter = false;
_error = _target - measurement;
_derivative.zero();
} else {
Vector2f error_last{_error};
_error += ((_target - measurement) - _error) * get_filt_E_alpha();
// calculate and filter derivative
if (_dt > 0.0f) {
const Vector2f derivative{(_error - error_last) / _dt};
_derivative += (derivative - _derivative) * get_filt_D_alpha();
}
}
// update I term
update_i(limit);
_pid_info_x.target = _target.x;
_pid_info_x.actual = measurement.x;
_pid_info_x.error = _error.x;
_pid_info_x.P = _error.x * _kp;
_pid_info_x.I = _integrator.x;
_pid_info_x.D = _derivative.x * _kd;
_pid_info_x.FF = _target.x * _kff;
_pid_info_y.target = _target.y;
_pid_info_y.actual = measurement.y;
_pid_info_y.error = _error.y;
_pid_info_y.P = _error.y * _kp;
_pid_info_y.I = _integrator.y;
_pid_info_y.D = _derivative.y * _kd;
_pid_info_y.FF = _target.y * _kff;
return _error * _kp + _integrator + _derivative * _kd + _target * _kff;
}
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit)
{
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, Vector2f{limit.x, limit.y});
}
// update_i - update the integral
// If the limit is set the integral is only allowed to reduce in the direction of the limit
void AC_PID_2D::update_i(const Vector2f &limit)
{
_pid_info_x.limit = false;
_pid_info_y.limit = false;
Vector2f delta_integrator = (_error * _ki) * _dt;
if (!is_zero(limit.length_squared())) {
// zero delta_vel if it will increase the velocity error
if (is_positive(delta_integrator * limit)) {
delta_integrator.zero();
_pid_info_x.limit = true;
_pid_info_y.limit = true;
}
}
_integrator += delta_integrator;
_integrator.limit_length(_kimax);
}
Vector2f AC_PID_2D::get_p() const
{
return _error * _kp;
}
const Vector2f& AC_PID_2D::get_i() const
{
return _integrator;
}
Vector2f AC_PID_2D::get_d() const
{
return _derivative * _kd;
}
Vector2f AC_PID_2D::get_ff()
{
_pid_info_x.FF = _target.x * _kff;
_pid_info_y.FF = _target.y * _kff;
return _target * _kff;
}
// save_gains - save gains to eeprom
void AC_PID_2D::save_gains()
{
_kp.save();
_ki.save();
_kd.save();
_kff.save();
_kimax.save();
_filt_E_hz.save();
_filt_D_hz.save();
}
// get the target filter alpha
float AC_PID_2D::get_filt_E_alpha() const
{
return calc_lowpass_alpha_dt(_dt, _filt_E_hz);
}
// get the derivative filter alpha
float AC_PID_2D::get_filt_D_alpha() const
{
return calc_lowpass_alpha_dt(_dt, _filt_D_hz);
}
void AC_PID_2D::set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i)
{
set_integrator(target - measurement, i);
}
void AC_PID_2D::set_integrator(const Vector2f& error, const Vector2f& i)
{
set_integrator(i - error * _kp);
}
void AC_PID_2D::set_integrator(const Vector2f& i)
{
_integrator = i;
_integrator.limit_length(_kimax);
}