ardupilot/libraries/AP_BoardConfig/AP_BoardConfig.cpp

308 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_BoardConfig - board specific configuration
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Common/AP_Common.h>
#include <GCS_MAVLink/GCS.h>
#include "AP_BoardConfig.h"
#include <stdio.h>
#include <AP_RTC/AP_RTC.h>
#if HAL_WITH_UAVCAN
#include <AP_UAVCAN/AP_UAVCAN.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL_Linux/CAN.h>
#endif
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
# define BOARD_SAFETY_ENABLE_DEFAULT 1
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V1)
#define BOARD_PWM_COUNT_DEFAULT 2
#define BOARD_SER1_RTSCTS_DEFAULT 0 // no flow control on UART5 on FMUv1
#elif defined(CONFIG_ARCH_BOARD_PX4FMU_V4)
#define BOARD_PWM_COUNT_DEFAULT 6
#define BOARD_SER1_RTSCTS_DEFAULT 2
#elif defined(CONFIG_ARCH_BOARD_AEROFC_V1)
#define BOARD_PWM_COUNT_DEFAULT 0
#define BOARD_SER1_RTSCTS_DEFAULT 0
# undef BOARD_SAFETY_ENABLE_DEFAULT
# define BOARD_SAFETY_ENABLE_DEFAULT 0
#else // V2
#define BOARD_PWM_COUNT_DEFAULT 4
#define BOARD_SER1_RTSCTS_DEFAULT 2
#endif
#ifndef BOARD_TYPE_DEFAULT
#define BOARD_TYPE_DEFAULT PX4_BOARD_AUTO
#endif
#elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
# define BOARD_SAFETY_ENABLE_DEFAULT 0
# define BOARD_PWM_COUNT_DEFAULT 8
# if defined(CONFIG_ARCH_BOARD_VRBRAIN_V51)
# define BOARD_TYPE_DEFAULT VRX_BOARD_BRAIN51
# elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V52)
# define BOARD_TYPE_DEFAULT VRX_BOARD_BRAIN52
# elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V52E)
# define BOARD_TYPE_DEFAULT VRX_BOARD_BRAIN52E
# elif defined(CONFIG_ARCH_BOARD_VRUBRAIN_V51)
# define BOARD_TYPE_DEFAULT VRX_BOARD_UBRAIN51
# elif defined(CONFIG_ARCH_BOARD_VRUBRAIN_V52)
# define BOARD_TYPE_DEFAULT VRX_BOARD_UBRAIN52
# elif defined(CONFIG_ARCH_BOARD_VRCORE_V10)
# define BOARD_TYPE_DEFAULT VRX_BOARD_CORE10
# elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V54)
# define BOARD_TYPE_DEFAULT VRX_BOARD_BRAIN54
# endif
#elif CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
# define BOARD_SAFETY_ENABLE_DEFAULT 1
#ifndef BOARD_PWM_COUNT_DEFAULT
# define BOARD_PWM_COUNT_DEFAULT 6
#endif
#ifndef BOARD_SER1_RTSCTS_DEFAULT
# define BOARD_SER1_RTSCTS_DEFAULT 2
#endif
#ifndef BOARD_TYPE_DEFAULT
# define BOARD_TYPE_DEFAULT PX4_BOARD_AUTO
#endif
#endif
#ifndef HAL_IMU_TEMP_DEFAULT
#define HAL_IMU_TEMP_DEFAULT -1 // disabled
#endif
#if AP_FEATURE_SAFETY_BUTTON
#ifndef BOARD_SAFETY_OPTION_DEFAULT
#define BOARD_SAFETY_OPTION_DEFAULT (BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF|BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON)
#endif
#endif
#ifndef BOARD_PWM_COUNT_DEFAULT
#define BOARD_PWM_COUNT_DEFAULT 8
#endif
extern const AP_HAL::HAL& hal;
AP_BoardConfig *AP_BoardConfig::instance;
// table of user settable parameters
const AP_Param::GroupInfo AP_BoardConfig::var_info[] = {
// @Param: PWM_COUNT
// @DisplayName: Auxiliary pin config
// @Description: Control assigning of FMU pins to PWM output, timer capture and GPIO. All unassigned pins can be used for GPIO
// @Values: 0:No PWMs,2:Two PWMs,4:Four PWMs,6:Six PWMs,7:Three PWMs and One Capture
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PWM_COUNT", 0, AP_BoardConfig, pwm_count, BOARD_PWM_COUNT_DEFAULT),
#if AP_FEATURE_RTSCTS
// @Param: SER1_RTSCTS
// @DisplayName: Serial 1 flow control
// @Description: Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER1_RTSCTS", 1, AP_BoardConfig, state.ser1_rtscts, BOARD_SER1_RTSCTS_DEFAULT),
// @Param: SER2_RTSCTS
// @DisplayName: Serial 2 flow control
// @Description: Enable flow control on serial 2 (telemetry 2) on Pixhawk and STATE. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup.
// @Values: 0:Disabled,1:Enabled,2:Auto
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SER2_RTSCTS", 2, AP_BoardConfig, state.ser2_rtscts, 2),
#endif
#if AP_FEATURE_SAFETY_BUTTON
// @Param: SAFETYENABLE
// @DisplayName: Enable use of safety arming switch
// @Description: This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message.
// @Values: 0:Disabled,1:Enabled
// @RebootRequired: True
// @User: Standard
AP_GROUPINFO("SAFETYENABLE", 3, AP_BoardConfig, state.safety_enable, BOARD_SAFETY_ENABLE_DEFAULT),
#endif
#if AP_FEATURE_SBUS_OUT
// @Param: SBUS_OUT
// @DisplayName: SBUS output rate
// @Description: This sets the SBUS output frame rate in Hz
// @Values: 0:Disabled,1:50Hz,2:75Hz,3:100Hz,4:150Hz,5:200Hz,6:250Hz,7:300Hz
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SBUS_OUT", 4, AP_BoardConfig, state.sbus_out_rate, 0),
#endif
// @Param: SERIAL_NUM
// @DisplayName: User-defined serial number
// @Description: User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot
// @Range: -32768 32767
// @User: Standard
AP_GROUPINFO("SERIAL_NUM", 5, AP_BoardConfig, vehicleSerialNumber, 0),
#if AP_FEATURE_SAFETY_BUTTON
// @Param: SAFETY_MASK
// @DisplayName: Channels to which ignore the safety switch state
// @Description: A bitmask which controls what channels can move while the safety switch has not been pressed
// @Values: 0:Disabled,1:Enabled
// @Bitmask: 0:Ch1,1:Ch2,2:Ch3,3:Ch4,4:Ch5,5:Ch6,6:Ch7,7:Ch8,8:Ch9,9:Ch10,10:Ch11,11:Ch12,12:Ch13,13:Ch14
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("SAFETY_MASK", 7, AP_BoardConfig, state.ignore_safety_channels, 0),
#endif
#if HAL_HAVE_IMU_HEATER
// @Param: IMU_TARGTEMP
// @DisplayName: Target IMU temperature
// @Description: This sets the target IMU temperature for boards with controllable IMU heating units. DO NOT SET -1 on The Cube. A value of -1 sets PH1 behaviour
// @Range: -1 80
// @Units: degC
// @User: Advanced
AP_GROUPINFO("IMU_TARGTEMP", 8, AP_BoardConfig, _imu_target_temperature, HAL_IMU_TEMP_DEFAULT),
#endif
#if AP_FEATURE_BOARD_DETECT
// @Param: TYPE
// @DisplayName: Board type
// @Description: This allows selection of a PX4 or VRBRAIN board type. If set to zero then the board type is auto-detected (PX4)
// @Values: 0:AUTO,1:PX4V1,2:Pixhawk,3:Cube/Pixhawk2,4:Pixracer,5:PixhawkMini,6:Pixhawk2Slim,7:VRBrain 5.1,8:VRBrain 5.2,9:VR Micro Brain 5.1,10:VR Micro Brain 5.2,11:VRBrain Core 1.0,12:VRBrain 5.4,13:Intel Aero FC,20:AUAV2.1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("TYPE", 9, AP_BoardConfig, state.board_type, BOARD_TYPE_DEFAULT),
#endif
#if AP_FEATURE_BOARD_DETECT
#if HAL_PX4_HAVE_PX4IO || HAL_WITH_IO_MCU
// @Param: IO_ENABLE
// @DisplayName: Enable IO co-processor
// @Description: This allows for the IO co-processor on FMUv1 and FMUv2 to be disabled
// @Values: 0:Disabled,1:Enabled
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("IO_ENABLE", 10, AP_BoardConfig, state.io_enable, 1),
#endif
#endif
#if HAL_RCINPUT_WITH_AP_RADIO
// @Group: RADIO
// @Path: ../AP_Radio/AP_Radio.cpp
AP_SUBGROUPINFO(_radio, "RADIO", 11, AP_BoardConfig, AP_Radio),
#endif
#if defined(HAL_NEEDS_PARAM_HELPER)
// @Group: ""
// @Path: ../libraries/AP_Param_Helper/AP_Param_Helper.cpp
AP_SUBGROUPINFO(param_helper, "", 12, AP_BoardConfig, AP_Param_Helper),
#endif
#if AP_FEATURE_SAFETY_BUTTON
// @Param: SAFETYOPTION
// @DisplayName: Options for safety button behavior
// @Description: This controls the activation of the safety button. It allows you to control if the safety button can be used for safety enable and/or disable, and whether the button is only active when disarmed
// @Bitmask: 0:ActiveForSafetyEnable,1:ActiveForSafetyDisable,2:ActiveWhenArmed
// @User: Standard
AP_GROUPINFO("SAFETYOPTION", 13, AP_BoardConfig, state.safety_option, BOARD_SAFETY_OPTION_DEFAULT),
#endif
// @Group: RTC
// @Path: ../AP_RTC/AP_RTC.cpp
AP_SUBGROUPINFO(rtc, "RTC", 14, AP_BoardConfig, AP_RTC),
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
// @Param: SD_SLOWDOWN
// @DisplayName: microSD slowdown
// @Description: This is a scaling factor to slow down microSD operation. It can be used on flight board and microSD card combinations where full speed is not reliable. For normal full speed operation a value of 0 should be used.
// @Range: 0 32
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("SD_SLOWDOWN", 17, AP_BoardConfig, _sdcard_slowdown, 0),
#endif
AP_GROUPEND
};
void AP_BoardConfig::init()
{
board_setup();
#if HAL_HAVE_IMU_HEATER
// let the HAL know the target temperature. We pass a pointer as
// we want the user to be able to change the parameter without
// rebooting
hal.util->set_imu_target_temp((int8_t *)&_imu_target_temperature);
#endif
AP::rtc().set_utc_usec(hal.util->get_hw_rtc(), AP_RTC::SOURCE_HW);
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && defined(USE_POSIX)
uint8_t slowdown = constrain_int16(_sdcard_slowdown.get(), 0, 32);
const uint8_t max_slowdown = 8;
do {
if (hal.util->fs_init()) {
break;
}
slowdown++;
hal.scheduler->delay(5);
} while (slowdown < max_slowdown);
if (slowdown < max_slowdown) {
_sdcard_slowdown.set(slowdown);
} else {
printf("SDCard failed to start\n");
}
#endif
}
// set default value for BRD_SAFETY_MASK
void AP_BoardConfig::set_default_safety_ignore_mask(uint16_t mask)
{
#if AP_FEATURE_SAFETY_BUTTON
state.ignore_safety_channels.set_default(mask);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
px4_setup_safety_mask();
#endif
#endif
}
void AP_BoardConfig::init_safety()
{
#if AP_FEATURE_SAFETY_BUTTON
board_init_safety();
#endif
}
/*
notify user of a fatal startup error related to available sensors.
*/
bool AP_BoardConfig::_in_sensor_config_error;
void AP_BoardConfig::sensor_config_error(const char *reason)
{
_in_sensor_config_error = true;
/*
to give the user the opportunity to connect to USB we keep
repeating the error. The mavlink delay callback is initialised
before this, so the user can change parameters (and in
particular BRD_TYPE if needed)
*/
while (true) {
printf("Sensor failure: %s\n", reason);
gcs().send_text(MAV_SEVERITY_ERROR, "Check BRD_TYPE: %s", reason);
hal.scheduler->delay(3000);
}
}