mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 18:38:28 -04:00
1416 lines
44 KiB
Plaintext
1416 lines
44 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// Functions called from the setup menu
|
|
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_compassmot (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_tune (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_range (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv);
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv);
|
|
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
|
|
static int8_t setup_set (uint8_t argc, const Menu::arg *argv);
|
|
|
|
// Command/function table for the setup menu
|
|
const struct Menu::command setup_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"erase", setup_erase},
|
|
{"reset", setup_factory},
|
|
{"radio", setup_radio},
|
|
{"frame", setup_frame},
|
|
{"motors", setup_motors},
|
|
{"level", setup_accel},
|
|
{"accel", setup_accel_scale},
|
|
{"modes", setup_flightmodes},
|
|
{"battery", setup_batt_monitor},
|
|
{"sonar", setup_sonar},
|
|
{"compass", setup_compass},
|
|
{"compassmot", setup_compassmot},
|
|
{"tune", setup_tune},
|
|
{"range", setup_range},
|
|
{"declination", setup_declination},
|
|
{"optflow", setup_optflow},
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
{"heli", setup_heli},
|
|
{"gyro", setup_gyro},
|
|
#endif
|
|
{"show", setup_show},
|
|
{"set", setup_set}
|
|
};
|
|
|
|
// Create the setup menu object.
|
|
MENU(setup_menu, "setup", setup_menu_commands);
|
|
|
|
// Called from the top-level menu to run the setup menu.
|
|
static int8_t
|
|
setup_mode(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
// Give the user some guidance
|
|
cliSerial->printf_P(PSTR("Setup Mode\n\n\n"));
|
|
|
|
if(g.rc_1.radio_min >= 1300) {
|
|
delay(1000);
|
|
cliSerial->printf_P(PSTR("\n!Warning, radio not configured!"));
|
|
delay(1000);
|
|
cliSerial->printf_P(PSTR("\n Type 'radio' now.\n\n"));
|
|
}
|
|
|
|
// Run the setup menu. When the menu exits, we will return to the main menu.
|
|
setup_menu.run();
|
|
return 0;
|
|
}
|
|
|
|
// Print the current configuration.
|
|
// Called by the setup menu 'show' command.
|
|
static int8_t
|
|
setup_show(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
AP_Param *param;
|
|
ap_var_type type;
|
|
|
|
//If a parameter name is given as an argument to show, print only that parameter
|
|
if(argc>=2)
|
|
{
|
|
|
|
param=AP_Param::find(argv[1].str, &type);
|
|
|
|
if(!param)
|
|
{
|
|
cliSerial->printf_P(PSTR("Parameter not found: '%s'\n"), argv[1]);
|
|
return 0;
|
|
}
|
|
AP_Param::show(param, argv[1].str, type, cliSerial);
|
|
return 0;
|
|
}
|
|
|
|
// clear the area
|
|
print_blanks(8);
|
|
|
|
report_version();
|
|
report_radio();
|
|
report_frame();
|
|
report_batt_monitor();
|
|
report_sonar();
|
|
report_flight_modes();
|
|
report_ins();
|
|
report_compass();
|
|
report_optflow();
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
report_heli();
|
|
report_gyro();
|
|
#endif
|
|
|
|
AP_Param::show_all(cliSerial);
|
|
|
|
return(0);
|
|
}
|
|
|
|
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
|
|
// Called by the setup menu 'factoryreset' command.
|
|
static int8_t
|
|
setup_factory(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int16_t c;
|
|
|
|
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n"));
|
|
|
|
do {
|
|
c = cliSerial->read();
|
|
} while (-1 == c);
|
|
|
|
if (('y' != c) && ('Y' != c))
|
|
return(-1);
|
|
|
|
AP_Param::erase_all();
|
|
cliSerial->printf_P(PSTR("\nReboot APM"));
|
|
|
|
delay(1000);
|
|
|
|
for (;; ) {
|
|
}
|
|
// note, cannot actually return here
|
|
return(0);
|
|
}
|
|
|
|
// Perform radio setup.
|
|
// Called by the setup menu 'radio' command.
|
|
static int8_t
|
|
setup_radio(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->println_P(PSTR("\n\nRadio Setup:"));
|
|
uint8_t i;
|
|
|
|
for(i = 0; i < 100; i++) {
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
if(g.rc_1.radio_in < 500) {
|
|
while(1) {
|
|
//cliSerial->printf_P(PSTR("\nNo radio; Check connectors."));
|
|
delay(1000);
|
|
// stop here
|
|
}
|
|
}
|
|
|
|
g.rc_1.radio_min = g.rc_1.radio_in;
|
|
g.rc_2.radio_min = g.rc_2.radio_in;
|
|
g.rc_3.radio_min = g.rc_3.radio_in;
|
|
g.rc_4.radio_min = g.rc_4.radio_in;
|
|
g.rc_5.radio_min = g.rc_5.radio_in;
|
|
g.rc_6.radio_min = g.rc_6.radio_in;
|
|
g.rc_7.radio_min = g.rc_7.radio_in;
|
|
g.rc_8.radio_min = g.rc_8.radio_in;
|
|
|
|
g.rc_1.radio_max = g.rc_1.radio_in;
|
|
g.rc_2.radio_max = g.rc_2.radio_in;
|
|
g.rc_3.radio_max = g.rc_3.radio_in;
|
|
g.rc_4.radio_max = g.rc_4.radio_in;
|
|
g.rc_5.radio_max = g.rc_5.radio_in;
|
|
g.rc_6.radio_max = g.rc_6.radio_in;
|
|
g.rc_7.radio_max = g.rc_7.radio_in;
|
|
g.rc_8.radio_max = g.rc_8.radio_in;
|
|
|
|
g.rc_1.radio_trim = g.rc_1.radio_in;
|
|
g.rc_2.radio_trim = g.rc_2.radio_in;
|
|
g.rc_4.radio_trim = g.rc_4.radio_in;
|
|
// 3 is not trimed
|
|
g.rc_5.radio_trim = 1500;
|
|
g.rc_6.radio_trim = 1500;
|
|
g.rc_7.radio_trim = 1500;
|
|
g.rc_8.radio_trim = 1500;
|
|
|
|
|
|
cliSerial->printf_P(PSTR("\nMove all controls to extremes. Enter to save: "));
|
|
while(1) {
|
|
|
|
delay(20);
|
|
// Filters radio input - adjust filters in the radio.pde file
|
|
// ----------------------------------------------------------
|
|
read_radio();
|
|
|
|
g.rc_1.update_min_max();
|
|
g.rc_2.update_min_max();
|
|
g.rc_3.update_min_max();
|
|
g.rc_4.update_min_max();
|
|
g.rc_5.update_min_max();
|
|
g.rc_6.update_min_max();
|
|
g.rc_7.update_min_max();
|
|
g.rc_8.update_min_max();
|
|
|
|
if(cliSerial->available() > 0) {
|
|
delay(20);
|
|
while (cliSerial->read() != -1); /* flush */
|
|
|
|
g.rc_1.save_eeprom();
|
|
g.rc_2.save_eeprom();
|
|
g.rc_3.save_eeprom();
|
|
g.rc_4.save_eeprom();
|
|
g.rc_5.save_eeprom();
|
|
g.rc_6.save_eeprom();
|
|
g.rc_7.save_eeprom();
|
|
g.rc_8.save_eeprom();
|
|
|
|
print_done();
|
|
break;
|
|
}
|
|
}
|
|
report_radio();
|
|
return(0);
|
|
}
|
|
|
|
static int8_t
|
|
setup_motors(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR(
|
|
"Connect battery for this test.\n"
|
|
"Motors will not spin in channel order (1,2,3,4) but by frame position order.\n"
|
|
"Front (& right of centerline) motor first, then in clockwise order around frame.\n"
|
|
"http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n"
|
|
"Remember to disconnect battery after this test.\n"
|
|
"Any key to exit.\n"));
|
|
while(1) {
|
|
delay(20);
|
|
read_radio();
|
|
motors.output_test();
|
|
if(cliSerial->available() > 0) {
|
|
g.esc_calibrate.set_and_save(0);
|
|
return(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
setup_accel(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
ahrs.init();
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate,
|
|
flash_leds);
|
|
ins.init_accel(flash_leds);
|
|
ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim
|
|
report_ins();
|
|
return(0);
|
|
}
|
|
|
|
static int8_t
|
|
setup_accel_scale(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
float trim_roll, trim_pitch;
|
|
|
|
cliSerial->println_P(PSTR("Initialising gyros"));
|
|
ahrs.init();
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate,
|
|
flash_leds);
|
|
AP_InertialSensor_UserInteractStream interact(hal.console);
|
|
if(ins.calibrate_accel(flash_leds, &interact, trim_roll, trim_pitch)) {
|
|
// reset ahrs's trim to suggested values from calibration routine
|
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
|
|
}
|
|
report_ins();
|
|
return(0);
|
|
}
|
|
|
|
static int8_t
|
|
setup_frame(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!strcmp_P(argv[1].str, PSTR("x"))) {
|
|
g.frame_orientation.set_and_save(X_FRAME);
|
|
} else if (!strcmp_P(argv[1].str, PSTR("p"))) {
|
|
g.frame_orientation.set_and_save(PLUS_FRAME);
|
|
} else if (!strcmp_P(argv[1].str, PSTR("+"))) {
|
|
g.frame_orientation.set_and_save(PLUS_FRAME);
|
|
} else if (!strcmp_P(argv[1].str, PSTR("v"))) {
|
|
g.frame_orientation.set_and_save(V_FRAME);
|
|
}else{
|
|
cliSerial->printf_P(PSTR("\nOp:[x,+,v]\n"));
|
|
report_frame();
|
|
return 0;
|
|
}
|
|
|
|
report_frame();
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
setup_flightmodes(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
uint8_t _switchPosition = 0;
|
|
uint8_t _oldSwitchPosition = 0;
|
|
int8_t mode = 0;
|
|
|
|
cliSerial->printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n"));
|
|
print_hit_enter();
|
|
|
|
while(1) {
|
|
delay(20);
|
|
read_radio();
|
|
_switchPosition = readSwitch();
|
|
|
|
|
|
// look for control switch change
|
|
if (_oldSwitchPosition != _switchPosition) {
|
|
|
|
mode = flight_modes[_switchPosition];
|
|
mode = constrain_int16(mode, 0, NUM_MODES-1);
|
|
|
|
// update the user
|
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
|
|
|
|
// Remember switch position
|
|
_oldSwitchPosition = _switchPosition;
|
|
}
|
|
|
|
// look for stick input
|
|
if (abs(g.rc_1.control_in) > 3000) {
|
|
mode++;
|
|
if(mode >= NUM_MODES)
|
|
mode = 0;
|
|
|
|
// save new mode
|
|
flight_modes[_switchPosition] = mode;
|
|
|
|
// print new mode
|
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
|
|
delay(500);
|
|
}
|
|
|
|
// look for stick input
|
|
if (g.rc_4.control_in > 3000) {
|
|
g.simple_modes |= (1<<_switchPosition);
|
|
// print new mode
|
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
|
|
delay(500);
|
|
}
|
|
|
|
// look for stick input
|
|
if (g.rc_4.control_in < -3000) {
|
|
g.simple_modes &= ~(1<<_switchPosition);
|
|
// print new mode
|
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
|
|
delay(500);
|
|
}
|
|
|
|
// escape hatch
|
|
if(cliSerial->available() > 0) {
|
|
for (mode = 0; mode < 6; mode++)
|
|
flight_modes[mode].save();
|
|
|
|
g.simple_modes.save();
|
|
print_done();
|
|
report_flight_modes();
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
setup_declination(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
compass.set_declination(radians(argv[1].f));
|
|
report_compass();
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
setup_tune(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
g.radio_tuning.set_and_save(argv[1].i);
|
|
report_tuning();
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
setup_range(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n"));
|
|
|
|
g.radio_tuning_low.set_and_save(argv[1].i);
|
|
g.radio_tuning_high.set_and_save(argv[2].i);
|
|
report_tuning();
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static int8_t
|
|
setup_erase(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
zero_eeprom();
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
setup_compass(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!strcmp_P(argv[1].str, PSTR("on"))) {
|
|
g.compass_enabled.set_and_save(true);
|
|
init_compass();
|
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
|
|
clear_offsets();
|
|
g.compass_enabled.set_and_save(false);
|
|
|
|
}else{
|
|
cliSerial->printf_P(PSTR("\nOp:[on,off]\n"));
|
|
report_compass();
|
|
return 0;
|
|
}
|
|
|
|
g.compass_enabled.save();
|
|
report_compass();
|
|
return 0;
|
|
}
|
|
|
|
// setup_compassmot - sets compass's motor interference parameters
|
|
static int8_t
|
|
setup_compassmot(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int8_t comp_type; // throttle or current based compensation
|
|
Vector3f compass_base; // compass vector when throttle is zero
|
|
Vector3f motor_impact; // impact of motors on compass vector
|
|
Vector3f motor_impact_scaled; // impact of motors on compass vector scaled with throttle
|
|
Vector3f motor_compensation; // final compensation to be stored to eeprom
|
|
float throttle_pct; // throttle as a percentage 0.0 ~ 1.0
|
|
uint32_t last_run_time;
|
|
uint8_t print_counter = 49;
|
|
bool updated = false; // have we updated the compensation vector at least once
|
|
|
|
// default compensation type to use current if possible
|
|
if( g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT ) {
|
|
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
|
|
}else{
|
|
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
|
|
}
|
|
|
|
// check if user wants throttle compensation
|
|
if( !strcmp_P(argv[1].str, PSTR("t")) || !strcmp_P(argv[1].str, PSTR("T")) ) {
|
|
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
|
|
}
|
|
|
|
// check if user wants current compensation
|
|
if( !strcmp_P(argv[1].str, PSTR("c")) || !strcmp_P(argv[1].str, PSTR("C")) ) {
|
|
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
|
|
}
|
|
|
|
// check compass is enabled
|
|
if( !g.compass_enabled ) {
|
|
cliSerial->print_P(PSTR("compass disabled, exiting"));
|
|
return 0;
|
|
}
|
|
|
|
// check if we have a current monitor
|
|
if( comp_type == AP_COMPASS_MOT_COMP_CURRENT && g.battery_monitoring != BATT_MONITOR_VOLTAGE_AND_CURRENT ) {
|
|
cliSerial->print_P(PSTR("current monitor disabled, exiting"));
|
|
return 0;
|
|
}
|
|
|
|
// initialise compass
|
|
init_compass();
|
|
|
|
// disable motor compensation
|
|
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
|
|
compass.set_motor_compensation(Vector3f(0,0,0));
|
|
|
|
// print warning that motors will spin
|
|
// ask user to raise throttle
|
|
// inform how to stop test
|
|
cliSerial->print_P(PSTR("This setup records the impact on the compass of spinning up the motors. The motors will spin!\nHold throttle low, then raise as high as safely possible for 10 sec.\nAt any time you may press any key to exit.\nmeasuring compass vs "));
|
|
|
|
// inform what type of compensation we are attempting
|
|
if( comp_type == AP_COMPASS_MOT_COMP_CURRENT ) {
|
|
cliSerial->print_P(PSTR("CURRENT\n"));
|
|
}else{
|
|
cliSerial->print_P(PSTR("THROTTLE\n"));
|
|
}
|
|
|
|
// clear out user input
|
|
while( cliSerial->available() ) {
|
|
cliSerial->read();
|
|
}
|
|
|
|
// disable throttle and battery failsafe
|
|
g.failsafe_throttle = FS_THR_DISABLED;
|
|
g.failsafe_battery_enabled = false;
|
|
|
|
// read radio
|
|
read_radio();
|
|
|
|
// exit immediately if throttle is not zero
|
|
if( g.rc_3.control_in != 0 ) {
|
|
cliSerial->print_P(PSTR("throttle not zero, exiting"));
|
|
return 0;
|
|
}
|
|
|
|
// get some initial compass readings
|
|
last_run_time = millis();
|
|
while( millis() - last_run_time < 2000 ) {
|
|
compass.accumulate();
|
|
}
|
|
compass.read();
|
|
|
|
// exit immediately if the compass is not healthy
|
|
if( !compass.healthy ) {
|
|
cliSerial->print_P(PSTR("compass not healthy, exiting"));
|
|
return 0;
|
|
}
|
|
|
|
// store initial x,y,z compass values
|
|
compass_base.x = compass.mag_x;
|
|
compass_base.y = compass.mag_y;
|
|
compass_base.z = compass.mag_z;
|
|
|
|
// initialise motor compensation
|
|
motor_compensation = Vector3f(0,0,0);
|
|
|
|
// clear out any user input
|
|
while( cliSerial->available() ) {
|
|
cliSerial->read();
|
|
}
|
|
|
|
// enable motors and pass through throttle
|
|
motors.enable();
|
|
motors.armed(true);
|
|
motors.output_min();
|
|
|
|
// initialise run time
|
|
last_run_time = millis();
|
|
|
|
// main run while there is no user input and the compass is healthy
|
|
while(!cliSerial->available() && compass.healthy) {
|
|
|
|
// 50hz loop
|
|
if( millis() - last_run_time > 20 ) {
|
|
last_run_time = millis();
|
|
|
|
// read radio input
|
|
read_radio();
|
|
|
|
// pass through throttle to motors
|
|
motors.throttle_pass_through();
|
|
|
|
// read some compass values
|
|
compass.read();
|
|
|
|
// read current
|
|
read_battery();
|
|
|
|
// calculate scaling for throttle
|
|
throttle_pct = (float)g.rc_3.control_in / 1000.0f;
|
|
throttle_pct = constrain(throttle_pct,0.0f,1.0f);
|
|
|
|
// if throttle is zero, update base x,y,z values
|
|
if( throttle_pct == 0.0f ) {
|
|
compass_base.x = compass_base.x * 0.99f + (float)compass.mag_x * 0.01f;
|
|
compass_base.y = compass_base.y * 0.99f + (float)compass.mag_y * 0.01f;
|
|
compass_base.z = compass_base.z * 0.99f + (float)compass.mag_z * 0.01f;
|
|
|
|
// causing printing to happen as soon as throttle is lifted
|
|
print_counter = 49;
|
|
}else{
|
|
|
|
// calculate diff from compass base and scale with throttle
|
|
motor_impact.x = compass.mag_x - compass_base.x;
|
|
motor_impact.y = compass.mag_y - compass_base.y;
|
|
motor_impact.z = compass.mag_z - compass_base.z;
|
|
|
|
// throttle based compensation
|
|
if( comp_type == AP_COMPASS_MOT_COMP_THROTTLE ) {
|
|
// scale by throttle
|
|
motor_impact_scaled = motor_impact / throttle_pct;
|
|
|
|
// adjust the motor compensation to negate the impact
|
|
motor_compensation = motor_compensation * 0.99f - motor_impact_scaled * 0.01f;
|
|
updated = true;
|
|
}else{
|
|
// current based compensation if more than 3amps being drawn
|
|
motor_impact_scaled = motor_impact / current_amps1;
|
|
|
|
// adjust the motor compensation to negate the impact if drawing over 3amps
|
|
if( current_amps1 >= 3.0f ) {
|
|
motor_compensation = motor_compensation * 0.99f - motor_impact_scaled * 0.01f;
|
|
updated = true;
|
|
}
|
|
}
|
|
|
|
// display output at 1hz if throttle is above zero
|
|
print_counter++;
|
|
if(print_counter >= 50) {
|
|
print_counter = 0;
|
|
cliSerial->printf_P(PSTR("thr:%d cur:%4.2f mot x:%4.1f y:%4.1f z:%4.1f comp x:%4.2f y:%4.2f z:%4.2f\n"),(int)g.rc_3.control_in, (float)current_amps1, (float)motor_impact.x, (float)motor_impact.y, (float)motor_impact.z, (float)motor_compensation.x, (float)motor_compensation.y, (float)motor_compensation.z);
|
|
}
|
|
}
|
|
}else{
|
|
// grab some compass values
|
|
compass.accumulate();
|
|
}
|
|
}
|
|
|
|
// stop motors
|
|
motors.output_min();
|
|
motors.armed(false);
|
|
|
|
// clear out any user input
|
|
while( cliSerial->available() ) {
|
|
cliSerial->read();
|
|
}
|
|
|
|
// print one more time so the last thing printed matches what appears in the report_compass
|
|
cliSerial->printf_P(PSTR("thr:%d cur:%4.2f mot x:%4.1f y:%4.1f z:%4.1f comp x:%4.2f y:%4.2f z:%4.2f\n"),(int)g.rc_3.control_in, (float)current_amps1, (float)motor_impact.x, (float)motor_impact.y, (float)motor_impact.z, (float)motor_compensation.x, (float)motor_compensation.y, (float)motor_compensation.z);
|
|
|
|
// set and save motor compensation
|
|
if( updated ) {
|
|
compass.motor_compensation_type(comp_type);
|
|
compass.set_motor_compensation(motor_compensation);
|
|
compass.save_motor_compensation();
|
|
}else{
|
|
// compensation vector never updated, report failure
|
|
cliSerial->printf_P(PSTR("Failed! Compensation disabled. Did you forget to raise the throttle high enough?"));
|
|
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
|
|
}
|
|
|
|
// display new motor offsets and save
|
|
report_compass();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!strcmp_P(argv[1].str, PSTR("off"))) {
|
|
g.battery_monitoring.set_and_save(0);
|
|
|
|
} else if(argv[1].i > 0 && argv[1].i <= 4) {
|
|
g.battery_monitoring.set_and_save(argv[1].i);
|
|
|
|
} else {
|
|
cliSerial->printf_P(PSTR("\nOp: off, 3-4"));
|
|
}
|
|
|
|
report_batt_monitor();
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
setup_sonar(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!strcmp_P(argv[1].str, PSTR("on"))) {
|
|
g.sonar_enabled.set_and_save(true);
|
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
|
|
g.sonar_enabled.set_and_save(false);
|
|
|
|
} else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) {
|
|
g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on
|
|
g.sonar_type.set_and_save(argv[1].i);
|
|
|
|
}else{
|
|
cliSerial->printf_P(PSTR("\nOp:[on, off, 0-3]\n"));
|
|
report_sonar();
|
|
return 0;
|
|
}
|
|
|
|
report_sonar();
|
|
return 0;
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
|
|
// Perform heli setup.
|
|
// Called by the setup menu 'radio' command.
|
|
static int8_t
|
|
setup_heli(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
|
|
uint8_t active_servo = 0;
|
|
int16_t value = 0;
|
|
int16_t temp;
|
|
int16_t state = 0; // 0 = set rev+pos, 1 = capture min/max
|
|
int16_t max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0;
|
|
|
|
// initialise swash plate
|
|
motors.init_swash();
|
|
|
|
// source swash plate movements directly from radio
|
|
motors.servo_manual = true;
|
|
|
|
// display initial settings
|
|
report_heli();
|
|
|
|
// display help
|
|
cliSerial->printf_P(PSTR("Instructions:"));
|
|
print_divider();
|
|
cliSerial->printf_P(PSTR("\td\t\tdisplay settings\n"));
|
|
cliSerial->printf_P(PSTR("\t1~4\t\tselect servo\n"));
|
|
cliSerial->printf_P(PSTR("\ta or z\t\tmove mid up/down\n"));
|
|
cliSerial->printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n"));
|
|
cliSerial->printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n"));
|
|
cliSerial->printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n"));
|
|
cliSerial->printf_P(PSTR("\tr\t\treverse servo\n"));
|
|
cliSerial->printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n"));
|
|
cliSerial->printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n"));
|
|
cliSerial->printf_P(PSTR("\tx\t\texit & save\n"));
|
|
|
|
// start capturing
|
|
while( value != 'x' ) {
|
|
|
|
// read radio although we don't use it yet
|
|
read_radio();
|
|
|
|
// allow swash plate to move
|
|
motors.output_armed();
|
|
|
|
// record min/max
|
|
if( state == 1 ) {
|
|
if( abs(g.rc_1.control_in) > max_roll )
|
|
max_roll = abs(g.rc_1.control_in);
|
|
if( abs(g.rc_2.control_in) > max_pitch )
|
|
max_pitch = abs(g.rc_2.control_in);
|
|
if( g.rc_3.radio_out < min_collective )
|
|
min_collective = g.rc_3.radio_out;
|
|
if( g.rc_3.radio_out > max_collective )
|
|
max_collective = g.rc_3.radio_out;
|
|
min_tail = min(g.rc_4.radio_out, min_tail);
|
|
max_tail = max(g.rc_4.radio_out, max_tail);
|
|
}
|
|
|
|
if( cliSerial->available() ) {
|
|
value = cliSerial->read();
|
|
|
|
// process the user's input
|
|
switch( value ) {
|
|
case '1':
|
|
active_servo = CH_1;
|
|
break;
|
|
case '2':
|
|
active_servo = CH_2;
|
|
break;
|
|
case '3':
|
|
active_servo = CH_3;
|
|
break;
|
|
case '4':
|
|
active_servo = CH_4;
|
|
break;
|
|
case 'a':
|
|
case 'A':
|
|
heli_get_servo(active_servo)->radio_trim += 10;
|
|
break;
|
|
case 'c':
|
|
case 'C':
|
|
if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) {
|
|
motors.collective_mid = g.rc_3.radio_out;
|
|
cliSerial->printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid);
|
|
}
|
|
break;
|
|
case 'd':
|
|
case 'D':
|
|
// display settings
|
|
report_heli();
|
|
break;
|
|
case 'm':
|
|
case 'M':
|
|
if( state == 0 ) {
|
|
state = 1; // switch to capture min/max mode
|
|
cliSerial->printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n"));
|
|
|
|
// reset servo ranges
|
|
motors.roll_max = motors.pitch_max = 4500;
|
|
motors.collective_min = 1000;
|
|
motors.collective_max = 2000;
|
|
motors._servo_4->radio_min = 1000;
|
|
motors._servo_4->radio_max = 2000;
|
|
|
|
// set sensible values in temp variables
|
|
max_roll = abs(g.rc_1.control_in);
|
|
max_pitch = abs(g.rc_2.control_in);
|
|
min_collective = 2000;
|
|
max_collective = 1000;
|
|
min_tail = max_tail = abs(g.rc_4.radio_out);
|
|
}else{
|
|
state = 0; // switch back to normal mode
|
|
// double check values aren't totally terrible
|
|
if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 )
|
|
cliSerial->printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail);
|
|
else{
|
|
motors.roll_max = max_roll;
|
|
motors.pitch_max = max_pitch;
|
|
motors.collective_min = min_collective;
|
|
motors.collective_max = max_collective;
|
|
motors._servo_4->radio_min = min_tail;
|
|
motors._servo_4->radio_max = max_tail;
|
|
|
|
// reinitialise swash
|
|
motors.init_swash();
|
|
|
|
// display settings
|
|
report_heli();
|
|
}
|
|
}
|
|
break;
|
|
case 'p':
|
|
case 'P':
|
|
temp = read_num_from_serial();
|
|
if( temp >= -360 && temp <= 360 ) {
|
|
if( active_servo == CH_1 )
|
|
motors.servo1_pos = temp;
|
|
if( active_servo == CH_2 )
|
|
motors.servo2_pos = temp;
|
|
if( active_servo == CH_3 )
|
|
motors.servo3_pos = temp;
|
|
motors.init_swash();
|
|
cliSerial->printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp);
|
|
}
|
|
break;
|
|
case 'r':
|
|
case 'R':
|
|
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse());
|
|
break;
|
|
case 't':
|
|
case 'T':
|
|
temp = read_num_from_serial();
|
|
if( temp > 1000 )
|
|
temp -= 1500;
|
|
if( temp > -500 && temp < 500 ) {
|
|
heli_get_servo(active_servo)->radio_trim = 1500 + temp;
|
|
motors.init_swash();
|
|
cliSerial->printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp);
|
|
}
|
|
break;
|
|
case 'u':
|
|
case 'U':
|
|
temp = 0;
|
|
// delay up to 2 seconds for servo type from user
|
|
while( !cliSerial->available() && temp < 20 ) {
|
|
temp++;
|
|
delay(100);
|
|
}
|
|
if( cliSerial->available() ) {
|
|
value = cliSerial->read();
|
|
if( value == 'a' || value == 'A' ) {
|
|
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
|
|
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
|
|
cliSerial->printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed);
|
|
}
|
|
if( value == 'd' || value == 'D' ) {
|
|
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
|
|
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
|
|
cliSerial->printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed);
|
|
}
|
|
}
|
|
break;
|
|
case 'z':
|
|
case 'Z':
|
|
heli_get_servo(active_servo)->radio_trim -= 10;
|
|
break;
|
|
}
|
|
}
|
|
|
|
delay(20);
|
|
}
|
|
|
|
// display final settings
|
|
report_heli();
|
|
|
|
// save to eeprom
|
|
motors._servo_1->save_eeprom();
|
|
motors._servo_2->save_eeprom();
|
|
motors._servo_3->save_eeprom();
|
|
motors._servo_4->save_eeprom();
|
|
motors.servo1_pos.save();
|
|
motors.servo2_pos.save();
|
|
motors.servo3_pos.save();
|
|
motors.roll_max.save();
|
|
motors.pitch_max.save();
|
|
motors.collective_min.save();
|
|
motors.collective_max.save();
|
|
motors.collective_mid.save();
|
|
|
|
// return swash plate movements to attitude controller
|
|
motors.servo_manual = false;
|
|
|
|
return(0);
|
|
}
|
|
|
|
// setup for external tail gyro (for heli only)
|
|
static int8_t
|
|
setup_gyro(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!strcmp_P(argv[1].str, PSTR("on"))) {
|
|
motors.ext_gyro_enabled.set_and_save(true);
|
|
|
|
// optionally capture the gain
|
|
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) {
|
|
motors.ext_gyro_gain = argv[2].i;
|
|
motors.ext_gyro_gain.save();
|
|
}
|
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
|
|
motors.ext_gyro_enabled.set_and_save(false);
|
|
|
|
// capture gain if user simply provides a number
|
|
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) {
|
|
motors.ext_gyro_enabled.set_and_save(true);
|
|
motors.ext_gyro_gain = argv[1].i;
|
|
motors.ext_gyro_gain.save();
|
|
|
|
}else{
|
|
cliSerial->printf_P(PSTR("\nOp:[on, off] gain\n"));
|
|
}
|
|
|
|
report_gyro();
|
|
return 0;
|
|
}
|
|
|
|
#endif // FRAME_CONFIG == HELI
|
|
|
|
static void clear_offsets()
|
|
{
|
|
Vector3f _offsets(0.0,0.0,0.0);
|
|
compass.set_offsets(_offsets);
|
|
compass.save_offsets();
|
|
}
|
|
|
|
static int8_t
|
|
setup_optflow(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
if (!strcmp_P(argv[1].str, PSTR("on"))) {
|
|
g.optflow_enabled = true;
|
|
init_optflow();
|
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
|
|
g.optflow_enabled = false;
|
|
|
|
}else{
|
|
cliSerial->printf_P(PSTR("\nOp:[on, off]\n"));
|
|
report_optflow();
|
|
return 0;
|
|
}
|
|
|
|
g.optflow_enabled.save();
|
|
report_optflow();
|
|
#endif // OPTFLOW == ENABLED
|
|
return 0;
|
|
}
|
|
|
|
//Set a parameter to a specified value. It will cast the value to the current type of the
|
|
//parameter and make sure it fits in case of INT8 and INT16
|
|
static int8_t setup_set(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int8_t value_int8;
|
|
int16_t value_int16;
|
|
|
|
AP_Param *param;
|
|
enum ap_var_type p_type;
|
|
|
|
if(argc!=3)
|
|
{
|
|
cliSerial->printf_P(PSTR("Invalid command. Usage: set <name> <value>\n"));
|
|
return 0;
|
|
}
|
|
|
|
param = AP_Param::find(argv[1].str, &p_type);
|
|
if(!param)
|
|
{
|
|
cliSerial->printf_P(PSTR("Param not found: %s\n"), argv[1].str);
|
|
return 0;
|
|
}
|
|
|
|
switch(p_type)
|
|
{
|
|
case AP_PARAM_INT8:
|
|
value_int8 = (int8_t)(argv[2].i);
|
|
if(argv[2].i!=value_int8)
|
|
{
|
|
cliSerial->printf_P(PSTR("Value out of range for type INT8\n"));
|
|
return 0;
|
|
}
|
|
((AP_Int8*)param)->set_and_save(value_int8);
|
|
break;
|
|
case AP_PARAM_INT16:
|
|
value_int16 = (int16_t)(argv[2].i);
|
|
if(argv[2].i!=value_int16)
|
|
{
|
|
cliSerial->printf_P(PSTR("Value out of range for type INT16\n"));
|
|
return 0;
|
|
}
|
|
((AP_Int16*)param)->set_and_save(value_int16);
|
|
break;
|
|
|
|
//int32 and float don't need bounds checking, just use the value provoded by Menu::arg
|
|
case AP_PARAM_INT32:
|
|
((AP_Int32*)param)->set_and_save(argv[2].i);
|
|
break;
|
|
case AP_PARAM_FLOAT:
|
|
((AP_Float*)param)->set_and_save(argv[2].f);
|
|
break;
|
|
default:
|
|
cliSerial->printf_P(PSTR("Cannot set parameter of type %d.\n"), p_type);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/***************************************************************************/
|
|
// CLI reports
|
|
/***************************************************************************/
|
|
|
|
static void report_batt_monitor()
|
|
{
|
|
cliSerial->printf_P(PSTR("\nBatt Mon:\n"));
|
|
print_divider();
|
|
if(g.battery_monitoring == BATT_MONITOR_DISABLED) print_enabled(false);
|
|
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) cliSerial->printf_P(PSTR("volts"));
|
|
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT) cliSerial->printf_P(PSTR("volts and cur"));
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_wp(uint8_t index = 255)
|
|
{
|
|
if(index == 255) {
|
|
for(uint8_t i = 0; i < g.command_total; i++) {
|
|
struct Location temp = get_cmd_with_index(i);
|
|
print_wp(&temp, i);
|
|
}
|
|
}else{
|
|
struct Location temp = get_cmd_with_index(index);
|
|
print_wp(&temp, index);
|
|
}
|
|
}
|
|
|
|
static void report_sonar()
|
|
{
|
|
cliSerial->printf_P(PSTR("Sonar\n"));
|
|
print_divider();
|
|
print_enabled(g.sonar_enabled.get());
|
|
cliSerial->printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type);
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_frame()
|
|
{
|
|
cliSerial->printf_P(PSTR("Frame\n"));
|
|
print_divider();
|
|
|
|
#if FRAME_CONFIG == QUAD_FRAME
|
|
cliSerial->printf_P(PSTR("Quad frame\n"));
|
|
#elif FRAME_CONFIG == TRI_FRAME
|
|
cliSerial->printf_P(PSTR("TRI frame\n"));
|
|
#elif FRAME_CONFIG == HEXA_FRAME
|
|
cliSerial->printf_P(PSTR("Hexa frame\n"));
|
|
#elif FRAME_CONFIG == Y6_FRAME
|
|
cliSerial->printf_P(PSTR("Y6 frame\n"));
|
|
#elif FRAME_CONFIG == OCTA_FRAME
|
|
cliSerial->printf_P(PSTR("Octa frame\n"));
|
|
#elif FRAME_CONFIG == HELI_FRAME
|
|
cliSerial->printf_P(PSTR("Heli frame\n"));
|
|
#endif
|
|
|
|
#if FRAME_CONFIG != HELI_FRAME
|
|
if(g.frame_orientation == X_FRAME)
|
|
cliSerial->printf_P(PSTR("X mode\n"));
|
|
else if(g.frame_orientation == PLUS_FRAME)
|
|
cliSerial->printf_P(PSTR("+ mode\n"));
|
|
else if(g.frame_orientation == V_FRAME)
|
|
cliSerial->printf_P(PSTR("V mode\n"));
|
|
#endif
|
|
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_radio()
|
|
{
|
|
cliSerial->printf_P(PSTR("Radio\n"));
|
|
print_divider();
|
|
// radio
|
|
print_radio_values();
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_ins()
|
|
{
|
|
cliSerial->printf_P(PSTR("INS\n"));
|
|
print_divider();
|
|
|
|
print_gyro_offsets();
|
|
print_accel_offsets_and_scaling();
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_compass()
|
|
{
|
|
cliSerial->printf_P(PSTR("Compass\n"));
|
|
print_divider();
|
|
|
|
print_enabled(g.compass_enabled);
|
|
|
|
// mag declination
|
|
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"),
|
|
degrees(compass.get_declination()));
|
|
|
|
Vector3f offsets = compass.get_offsets();
|
|
|
|
// mag offsets
|
|
cliSerial->printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f\n"),
|
|
offsets.x,
|
|
offsets.y,
|
|
offsets.z);
|
|
|
|
// motor compensation
|
|
cliSerial->print_P(PSTR("Motor Comp: "));
|
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) {
|
|
cliSerial->print_P(PSTR("Off\n"));
|
|
}else{
|
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) {
|
|
cliSerial->print_P(PSTR("Throttle"));
|
|
}
|
|
if( compass.motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) {
|
|
cliSerial->print_P(PSTR("Current"));
|
|
}
|
|
Vector3f motor_compensation = compass.get_motor_compensation();
|
|
cliSerial->printf_P(PSTR("\nComp Vec: %4.2f, %4.2f, %4.2f\n"),
|
|
motor_compensation.x,
|
|
motor_compensation.y,
|
|
motor_compensation.z);
|
|
}
|
|
print_blanks(1);
|
|
}
|
|
|
|
static void report_flight_modes()
|
|
{
|
|
cliSerial->printf_P(PSTR("Flight modes\n"));
|
|
print_divider();
|
|
|
|
for(int16_t i = 0; i < 6; i++ ) {
|
|
print_switch(i, flight_modes[i], (g.simple_modes & (1<<i)));
|
|
}
|
|
print_blanks(2);
|
|
}
|
|
|
|
void report_optflow()
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
cliSerial->printf_P(PSTR("OptFlow\n"));
|
|
print_divider();
|
|
|
|
print_enabled(g.optflow_enabled);
|
|
|
|
print_blanks(2);
|
|
#endif // OPTFLOW == ENABLED
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
static void report_heli()
|
|
{
|
|
cliSerial->printf_P(PSTR("Heli\n"));
|
|
print_divider();
|
|
|
|
// main servo settings
|
|
cliSerial->printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n"));
|
|
cliSerial->printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)motors.servo1_pos, (int)motors._servo_1->radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse());
|
|
cliSerial->printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse());
|
|
cliSerial->printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse());
|
|
cliSerial->printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse());
|
|
|
|
cliSerial->printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max);
|
|
cliSerial->printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max);
|
|
cliSerial->printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max);
|
|
|
|
// calculate and print servo rate
|
|
cliSerial->printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed);
|
|
|
|
print_blanks(2);
|
|
}
|
|
|
|
static void report_gyro()
|
|
{
|
|
|
|
cliSerial->printf_P(PSTR("Gyro:\n"));
|
|
print_divider();
|
|
|
|
print_enabled( motors.ext_gyro_enabled );
|
|
if( motors.ext_gyro_enabled )
|
|
cliSerial->printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain);
|
|
|
|
print_blanks(2);
|
|
}
|
|
|
|
#endif // FRAME_CONFIG == HELI_FRAME
|
|
|
|
/***************************************************************************/
|
|
// CLI utilities
|
|
/***************************************************************************/
|
|
|
|
/*static void
|
|
* print_PID(PI * pid)
|
|
* {
|
|
* cliSerial->printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"),
|
|
* pid->kP(),
|
|
* pid->kI(),
|
|
* (long)pid->imax());
|
|
* }
|
|
*/
|
|
|
|
static void
|
|
print_radio_values()
|
|
{
|
|
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max);
|
|
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max);
|
|
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max);
|
|
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max);
|
|
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
|
|
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
|
|
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
|
|
//cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
|
|
}
|
|
|
|
static void
|
|
print_switch(uint8_t p, uint8_t m, bool b)
|
|
{
|
|
cliSerial->printf_P(PSTR("Pos %d:\t"),p);
|
|
print_flight_mode(cliSerial, m);
|
|
cliSerial->printf_P(PSTR(",\t\tSimple: "));
|
|
if(b)
|
|
cliSerial->printf_P(PSTR("ON\n"));
|
|
else
|
|
cliSerial->printf_P(PSTR("OFF\n"));
|
|
}
|
|
|
|
static void
|
|
print_done()
|
|
{
|
|
cliSerial->printf_P(PSTR("\nSaved\n"));
|
|
}
|
|
|
|
|
|
static void zero_eeprom(void)
|
|
{
|
|
cliSerial->printf_P(PSTR("\nErasing EEPROM\n"));
|
|
|
|
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i++) {
|
|
hal.storage->write_byte(i, 0);
|
|
}
|
|
|
|
cliSerial->printf_P(PSTR("done\n"));
|
|
}
|
|
|
|
static void
|
|
print_accel_offsets_and_scaling(void)
|
|
{
|
|
Vector3f accel_offsets = ins.get_accel_offsets();
|
|
Vector3f accel_scale = ins.get_accel_scale();
|
|
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\nA_scale: %4.2f, %4.2f, %4.2f\n"),
|
|
(float)accel_offsets.x, // Pitch
|
|
(float)accel_offsets.y, // Roll
|
|
(float)accel_offsets.z, // YAW
|
|
(float)accel_scale.x, // Pitch
|
|
(float)accel_scale.y, // Roll
|
|
(float)accel_scale.z); // YAW
|
|
}
|
|
|
|
static void
|
|
print_gyro_offsets(void)
|
|
{
|
|
Vector3f gyro_offsets = ins.get_gyro_offsets();
|
|
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"),
|
|
(float)gyro_offsets.x,
|
|
(float)gyro_offsets.y,
|
|
(float)gyro_offsets.z);
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
|
|
static RC_Channel *
|
|
heli_get_servo(int16_t servo_num){
|
|
if( servo_num == CH_1 )
|
|
return motors._servo_1;
|
|
if( servo_num == CH_2 )
|
|
return motors._servo_2;
|
|
if( servo_num == CH_3 )
|
|
return motors._servo_3;
|
|
if( servo_num == CH_4 )
|
|
return motors._servo_4;
|
|
return NULL;
|
|
}
|
|
|
|
// Used to read integer values from the serial port
|
|
static int16_t read_num_from_serial() {
|
|
uint8_t index = 0;
|
|
uint8_t timeout = 0;
|
|
char data[5] = "";
|
|
|
|
do {
|
|
if (cliSerial->available() == 0) {
|
|
delay(10);
|
|
timeout++;
|
|
}else{
|
|
data[index] = cliSerial->read();
|
|
timeout = 0;
|
|
index++;
|
|
}
|
|
} while (timeout < 5 && index < 5);
|
|
|
|
return atoi(data);
|
|
}
|
|
#endif
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void
|
|
print_blanks(int16_t num)
|
|
{
|
|
while(num > 0) {
|
|
num--;
|
|
cliSerial->println("");
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_divider(void)
|
|
{
|
|
for (int i = 0; i < 40; i++) {
|
|
cliSerial->print_P(PSTR("-"));
|
|
}
|
|
cliSerial->println();
|
|
}
|
|
|
|
static void print_enabled(bool b)
|
|
{
|
|
if(b)
|
|
cliSerial->print_P(PSTR("en"));
|
|
else
|
|
cliSerial->print_P(PSTR("dis"));
|
|
cliSerial->print_P(PSTR("abled\n"));
|
|
}
|
|
|
|
|
|
static void
|
|
init_esc()
|
|
{
|
|
// reduce update rate to motors to 50Hz
|
|
motors.set_update_rate(50);
|
|
motors.enable();
|
|
motors.armed(true);
|
|
while(1) {
|
|
read_radio();
|
|
delay(100);
|
|
dancing_light();
|
|
motors.throttle_pass_through();
|
|
}
|
|
}
|
|
|
|
static void print_wp(const struct Location *cmd, uint8_t index)
|
|
{
|
|
cliSerial->printf_P(PSTR("cmd#: %d | %d, %d, %d, %ld, %ld, %ld\n"),
|
|
index,
|
|
cmd->id,
|
|
cmd->options,
|
|
cmd->p1,
|
|
cmd->alt,
|
|
cmd->lat,
|
|
cmd->lng);
|
|
}
|
|
|
|
static void report_version()
|
|
{
|
|
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version);
|
|
print_divider();
|
|
print_blanks(2);
|
|
}
|
|
|
|
|
|
static void report_tuning()
|
|
{
|
|
cliSerial->printf_P(PSTR("\nTUNE:\n"));
|
|
print_divider();
|
|
if (g.radio_tuning == 0) {
|
|
print_enabled(g.radio_tuning.get());
|
|
}else{
|
|
float low = (float)g.radio_tuning_low.get() / 1000;
|
|
float high = (float)g.radio_tuning_high.get() / 1000;
|
|
cliSerial->printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high);
|
|
}
|
|
print_blanks(2);
|
|
}
|