mirror of https://github.com/ArduPilot/ardupilot
884 lines
33 KiB
C++
884 lines
33 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#include <AP_HAL.h>
|
|
#include <AC_PosControl.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] PROGMEM = {
|
|
// @Param: THR_HOVER
|
|
// @DisplayName: Throttle Hover
|
|
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode
|
|
// @Range: 0 1000
|
|
// @Units: Percent*10
|
|
// @User: Advanced
|
|
AP_GROUPINFO("THR_HOVER", 0, AC_PosControl, _throttle_hover, POSCONTROL_THROTTLE_HOVER),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav,
|
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control,
|
|
AC_P& p_alt_pos, AC_P& p_alt_rate, AC_PID& pid_alt_accel,
|
|
AC_P& p_pos_xy, AC_PID& pid_rate_lat, AC_PID& pid_rate_lon) :
|
|
_ahrs(ahrs),
|
|
_inav(inav),
|
|
_motors(motors),
|
|
_attitude_control(attitude_control),
|
|
_p_alt_pos(p_alt_pos),
|
|
_p_alt_rate(p_alt_rate),
|
|
_pid_alt_accel(pid_alt_accel),
|
|
_p_pos_xy(p_pos_xy),
|
|
_pid_rate_lat(pid_rate_lat),
|
|
_pid_rate_lon(pid_rate_lon),
|
|
_dt(POSCONTROL_DT_10HZ),
|
|
_last_update_xy_ms(0),
|
|
_last_update_z_ms(0),
|
|
_last_update_vel_xyz_ms(0),
|
|
_speed_down_cms(POSCONTROL_SPEED_DOWN),
|
|
_speed_up_cms(POSCONTROL_SPEED_UP),
|
|
_speed_cms(POSCONTROL_SPEED),
|
|
_accel_z_cms(POSCONTROL_ACCEL_Z),
|
|
_accel_cms(POSCONTROL_ACCEL_XY),
|
|
_leash(POSCONTROL_LEASH_LENGTH_MIN),
|
|
_roll_target(0.0),
|
|
_pitch_target(0.0),
|
|
_alt_max(0),
|
|
_distance_to_target(0),
|
|
_xy_step(0),
|
|
_dt_xy(0),
|
|
_vel_xyz_step(0)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// initialise flags
|
|
_flags.force_recalc_xy = false;
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
_flags.slow_cpu = false;
|
|
#else
|
|
_flags.slow_cpu = true;
|
|
#endif
|
|
_flags.recalc_leash_xy = true;
|
|
_flags.recalc_leash_z = true;
|
|
_flags.keep_xy_I_terms = false;
|
|
_flags.reset_desired_vel_to_pos = true;
|
|
_flags.reset_rate_to_accel_xy = true;
|
|
_flags.reset_rate_to_accel_z = true;
|
|
_flags.reset_accel_to_throttle = true;
|
|
}
|
|
|
|
///
|
|
/// z-axis position controller
|
|
///
|
|
|
|
|
|
/// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025)
|
|
void AC_PosControl::set_dt(float delta_sec)
|
|
{
|
|
_dt = delta_sec;
|
|
|
|
// update rate controller's d filter
|
|
_pid_alt_accel.set_d_lpf_alpha(POSCONTROL_ACCEL_Z_DTERM_FILTER, _dt);
|
|
}
|
|
|
|
/// set_speed_z - sets maximum climb and descent rates
|
|
/// To-Do: call this in the main code as part of flight mode initialisation
|
|
/// calc_leash_length_z should be called afterwards
|
|
/// speed_down should be a negative number
|
|
void AC_PosControl::set_speed_z(float speed_down, float speed_up)
|
|
{
|
|
// ensure speed_down is always negative
|
|
speed_down = -fabs(speed_down);
|
|
|
|
if ((fabs(_speed_down_cms-speed_down) > 1.0f) || (fabs(_speed_up_cms-speed_up) > 1.0f)) {
|
|
_speed_down_cms = speed_down;
|
|
_speed_up_cms = speed_up;
|
|
_flags.recalc_leash_z = true;
|
|
}
|
|
}
|
|
|
|
/// set_accel_z - set vertical acceleration in cm/s/s
|
|
void AC_PosControl::set_accel_z(float accel_cmss)
|
|
{
|
|
if (fabs(_accel_z_cms-accel_cmss) > 1.0f) {
|
|
_accel_z_cms = accel_cmss;
|
|
_flags.recalc_leash_z = true;
|
|
}
|
|
}
|
|
|
|
/// set_alt_target_with_slew - adjusts target towards a final altitude target
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt)
|
|
{
|
|
float alt_change = alt_cm-_pos_target.z;
|
|
|
|
// adjust desired alt if motors have not hit their limits
|
|
if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) {
|
|
_pos_target.z += constrain_float(alt_change, _speed_down_cms*dt, _speed_up_cms*dt);
|
|
}
|
|
|
|
// do not let target get too far from current altitude
|
|
float curr_alt = _inav.get_altitude();
|
|
_pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z);
|
|
}
|
|
|
|
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt)
|
|
{
|
|
// adjust desired alt if motors have not hit their limits
|
|
// To-Do: add check of _limit.pos_up and _limit.pos_down?
|
|
if ((climb_rate_cms<0 && !_motors.limit.throttle_lower) || (climb_rate_cms>0 && !_motors.limit.throttle_upper)) {
|
|
_pos_target.z += climb_rate_cms * _dt;
|
|
}
|
|
}
|
|
|
|
// get_alt_error - returns altitude error in cm
|
|
float AC_PosControl::get_alt_error() const
|
|
{
|
|
return (_pos_target.z - _inav.get_altitude());
|
|
}
|
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home
|
|
void AC_PosControl::set_target_to_stopping_point_z()
|
|
{
|
|
// check if z leash needs to be recalculated
|
|
calc_leash_length_z();
|
|
|
|
get_stopping_point_z(_pos_target);
|
|
}
|
|
|
|
/// get_stopping_point_z - sets stopping_point.z to a reasonable stopping altitude in cm above home
|
|
void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const
|
|
{
|
|
const float curr_pos_z = _inav.get_altitude();
|
|
float curr_vel_z = _inav.get_velocity_z();
|
|
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt
|
|
float linear_velocity; // the velocity we swap between linear and sqrt
|
|
|
|
// if position controller is active add current velocity error to avoid sudden jump in acceleration
|
|
if (is_active_z()) {
|
|
curr_vel_z += _vel_error.z;
|
|
}
|
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
|
|
linear_velocity = _accel_z_cms/_p_alt_pos.kP();
|
|
|
|
if (fabs(curr_vel_z) < linear_velocity) {
|
|
// if our current velocity is below the cross-over point we use a linear function
|
|
stopping_point.z = curr_pos_z + curr_vel_z/_p_alt_pos.kP();
|
|
} else {
|
|
linear_distance = _accel_z_cms/(2.0f*_p_alt_pos.kP()*_p_alt_pos.kP());
|
|
if (curr_vel_z > 0){
|
|
stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms));
|
|
} else {
|
|
stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms));
|
|
}
|
|
}
|
|
stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_Z_MAX);
|
|
}
|
|
|
|
/// init_takeoff - initialises target altitude if we are taking off
|
|
void AC_PosControl::init_takeoff()
|
|
{
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
|
|
_pos_target.z = curr_pos.z + POSCONTROL_TAKEOFF_JUMP_CM;
|
|
|
|
// clear i term from acceleration controller
|
|
if (_pid_alt_accel.get_integrator() < 0) {
|
|
_pid_alt_accel.reset_I();
|
|
}
|
|
}
|
|
|
|
// is_active_z - returns true if the z-axis position controller has been run very recently
|
|
bool AC_PosControl::is_active_z() const
|
|
{
|
|
return ((hal.scheduler->millis() - _last_update_z_ms) <= POSCONTROL_ACTIVE_TIMEOUT_MS);
|
|
}
|
|
|
|
/// update_z_controller - fly to altitude in cm above home
|
|
void AC_PosControl::update_z_controller()
|
|
{
|
|
// check time since last cast
|
|
uint32_t now = hal.scheduler->millis();
|
|
if (now - _last_update_z_ms > POSCONTROL_ACTIVE_TIMEOUT_MS) {
|
|
_flags.reset_rate_to_accel_z = true;
|
|
_flags.reset_accel_to_throttle = true;
|
|
}
|
|
_last_update_z_ms = now;
|
|
|
|
// check if leash lengths need to be recalculated
|
|
calc_leash_length_z();
|
|
|
|
// call position controller
|
|
pos_to_rate_z();
|
|
}
|
|
|
|
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
|
|
/// called by pos_to_rate_z if z-axis speed or accelerations are changed
|
|
void AC_PosControl::calc_leash_length_z()
|
|
{
|
|
if (_flags.recalc_leash_z) {
|
|
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_alt_pos.kP());
|
|
_leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_alt_pos.kP());
|
|
_flags.recalc_leash_z = false;
|
|
}
|
|
}
|
|
|
|
// pos_to_rate_z - position to rate controller for Z axis
|
|
// calculates desired rate in earth-frame z axis and passes to rate controller
|
|
// vel_up_max, vel_down_max should have already been set before calling this method
|
|
void AC_PosControl::pos_to_rate_z()
|
|
{
|
|
float curr_alt = _inav.get_altitude();
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt.
|
|
|
|
// clear position limit flags
|
|
_limit.pos_up = false;
|
|
_limit.pos_down = false;
|
|
|
|
// calculate altitude error
|
|
_pos_error.z = _pos_target.z - curr_alt;
|
|
|
|
// do not let target altitude get too far from current altitude
|
|
if (_pos_error.z > _leash_up_z) {
|
|
_pos_target.z = curr_alt + _leash_up_z;
|
|
_pos_error.z = _leash_up_z;
|
|
_limit.pos_up = true;
|
|
}
|
|
if (_pos_error.z < -_leash_down_z) {
|
|
_pos_target.z = curr_alt - _leash_down_z;
|
|
_pos_error.z = -_leash_down_z;
|
|
_limit.pos_down = true;
|
|
}
|
|
|
|
// do not let target alt get above limit
|
|
if (_alt_max > 0 && _pos_target.z > _alt_max) {
|
|
_pos_target.z = _alt_max;
|
|
_limit.pos_up = true;
|
|
}
|
|
|
|
// check kP to avoid division by zero
|
|
if (_p_alt_pos.kP() != 0) {
|
|
linear_distance = _accel_z_cms/(2.0f*_p_alt_pos.kP()*_p_alt_pos.kP());
|
|
if (_pos_error.z > 2*linear_distance ) {
|
|
_vel_target.z = safe_sqrt(2.0f*_accel_z_cms*(_pos_error.z-linear_distance));
|
|
}else if (_pos_error.z < -2.0f*linear_distance) {
|
|
_vel_target.z = -safe_sqrt(2.0f*_accel_z_cms*(-_pos_error.z-linear_distance));
|
|
}else{
|
|
_vel_target.z = _p_alt_pos.get_p(_pos_error.z);
|
|
}
|
|
}else{
|
|
_vel_target.z = 0;
|
|
}
|
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets
|
|
rate_to_accel_z();
|
|
}
|
|
|
|
// rate_to_accel_z - calculates desired accel required to achieve the velocity target
|
|
// calculates desired acceleration and calls accel throttle controller
|
|
void AC_PosControl::rate_to_accel_z()
|
|
{
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
float p; // used to capture pid values for logging
|
|
float desired_accel; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors
|
|
|
|
// check speed limits
|
|
// To-Do: check these speed limits here or in the pos->rate controller
|
|
_limit.vel_up = false;
|
|
_limit.vel_down = false;
|
|
if (_vel_target.z < _speed_down_cms) {
|
|
_vel_target.z = _speed_down_cms;
|
|
_limit.vel_down = true;
|
|
}
|
|
if (_vel_target.z > _speed_up_cms) {
|
|
_vel_target.z = _speed_up_cms;
|
|
_limit.vel_up = true;
|
|
}
|
|
|
|
// reset last velocity target to current target
|
|
if (_flags.reset_rate_to_accel_z) {
|
|
_vel_last.z = _vel_target.z;
|
|
_flags.reset_rate_to_accel_z = false;
|
|
}
|
|
|
|
// feed forward desired acceleration calculation
|
|
if (_dt > 0.0f) {
|
|
if (!_flags.freeze_ff_z) {
|
|
_accel_feedforward.z = (_vel_target.z - _vel_last.z)/_dt;
|
|
} else {
|
|
// stop the feed forward being calculated during a known discontinuity
|
|
_flags.freeze_ff_z = false;
|
|
}
|
|
} else {
|
|
_accel_feedforward.z = 0.0f;
|
|
}
|
|
|
|
// store this iteration's velocities for the next iteration
|
|
_vel_last.z = _vel_target.z;
|
|
|
|
// reset velocity error and filter if this controller has just been engaged
|
|
if (_flags.reset_rate_to_accel_z) {
|
|
// Reset Filter
|
|
_vel_error.z = 0;
|
|
desired_accel = 0;
|
|
_flags.reset_rate_to_accel_z = false;
|
|
} else {
|
|
_vel_error.z = (_vel_target.z - curr_vel.z);
|
|
}
|
|
|
|
// calculate p
|
|
p = _p_alt_rate.kP() * _vel_error.z;
|
|
|
|
// consolidate and constrain target acceleration
|
|
desired_accel = _accel_feedforward.z + p;
|
|
desired_accel = constrain_int32(desired_accel, -32000, 32000);
|
|
|
|
// set target for accel based throttle controller
|
|
accel_to_throttle(desired_accel);
|
|
}
|
|
|
|
// accel_to_throttle - alt hold's acceleration controller
|
|
// calculates a desired throttle which is sent directly to the motors
|
|
void AC_PosControl::accel_to_throttle(float accel_target_z)
|
|
{
|
|
float z_accel_meas; // actual acceleration
|
|
int32_t p,i,d; // used to capture pid values for logging
|
|
|
|
// Calculate Earth Frame Z acceleration
|
|
z_accel_meas = -(_ahrs.get_accel_ef().z + GRAVITY_MSS) * 100.0f;
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if (_flags.reset_accel_to_throttle) {
|
|
// Reset Filter
|
|
_accel_error.z = 0;
|
|
_flags.reset_accel_to_throttle = false;
|
|
} else {
|
|
// calculate accel error and Filter with fc = 2 Hz
|
|
// To-Do: replace constant below with one that is adjusted for update rate
|
|
_accel_error.z = _accel_error.z + 0.11164f * (constrain_float(accel_target_z - z_accel_meas, -32000, 32000) - _accel_error.z);
|
|
}
|
|
|
|
// separately calculate p, i, d values for logging
|
|
p = _pid_alt_accel.get_p(_accel_error.z);
|
|
|
|
// get i term
|
|
i = _pid_alt_accel.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
// To-Do: should this be replaced with limits check from attitude_controller?
|
|
if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) {
|
|
i = _pid_alt_accel.get_i(_accel_error.z, _dt);
|
|
}
|
|
|
|
// get d term
|
|
d = _pid_alt_accel.get_d(_accel_error.z, _dt);
|
|
|
|
// To-Do: pull min/max throttle from motors
|
|
// To-Do: we had a contraint here but it's now removed, is this ok? with the motors library handle it ok?
|
|
_attitude_control.set_throttle_out((int16_t)p+i+d+_throttle_hover, true);
|
|
|
|
// to-do add back in PID logging?
|
|
}
|
|
|
|
///
|
|
/// position controller
|
|
///
|
|
|
|
/// set_accel_xy - set horizontal acceleration in cm/s/s
|
|
/// calc_leash_length_xy should be called afterwards
|
|
void AC_PosControl::set_accel_xy(float accel_cmss)
|
|
{
|
|
if (fabs(_accel_cms-accel_cmss) > 1.0f) {
|
|
_accel_cms = accel_cmss;
|
|
_flags.recalc_leash_xy = true;
|
|
}
|
|
}
|
|
|
|
/// set_speed_xy - set horizontal speed maximum in cm/s
|
|
/// calc_leash_length_xy should be called afterwards
|
|
void AC_PosControl::set_speed_xy(float speed_cms)
|
|
{
|
|
if (fabs(_speed_cms-speed_cms) > 1.0f) {
|
|
_speed_cms = speed_cms;
|
|
_flags.recalc_leash_xy = true;
|
|
}
|
|
}
|
|
|
|
/// set_pos_target in cm from home
|
|
void AC_PosControl::set_pos_target(const Vector3f& position)
|
|
{
|
|
_pos_target = position;
|
|
|
|
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
|
|
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle
|
|
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
|
|
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
|
|
}
|
|
|
|
/// set_xy_target in cm from home
|
|
void AC_PosControl::set_xy_target(float x, float y)
|
|
{
|
|
_pos_target.x = x;
|
|
_pos_target.y = y;
|
|
}
|
|
|
|
/// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home
|
|
void AC_PosControl::set_target_to_stopping_point_xy()
|
|
{
|
|
// check if xy leash needs to be recalculated
|
|
calc_leash_length_xy();
|
|
|
|
get_stopping_point_xy(_pos_target);
|
|
}
|
|
|
|
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
|
|
/// distance_max allows limiting distance to stopping point
|
|
/// results placed in stopping_position vector
|
|
/// set_accel_xy() should be called before this method to set vehicle acceleration
|
|
/// set_leash_length() should have been called before this method
|
|
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const
|
|
{
|
|
const Vector3f curr_pos = _inav.get_position();
|
|
Vector3f curr_vel = _inav.get_velocity();
|
|
float linear_distance; // the distance at which we swap from a linear to sqrt response
|
|
float linear_velocity; // the velocity above which we swap from a linear to sqrt response
|
|
float stopping_dist; // the distance within the vehicle can stop
|
|
float kP = _p_pos_xy.kP();
|
|
|
|
// add velocity error to current velocity
|
|
if (is_active_xy()) {
|
|
curr_vel.x += _vel_error.x;
|
|
curr_vel.y += _vel_error.y;
|
|
}
|
|
|
|
// calculate current velocity
|
|
float vel_total = pythagorous2(curr_vel.x, curr_vel.y);
|
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
|
|
if (kP <= 0.0f || _accel_cms <= 0.0f) {
|
|
stopping_point.x = curr_pos.x;
|
|
stopping_point.y = curr_pos.y;
|
|
return;
|
|
}
|
|
|
|
// calculate point at which velocity switches from linear to sqrt
|
|
linear_velocity = _accel_cms/kP;
|
|
|
|
// calculate distance within which we can stop
|
|
if (vel_total < linear_velocity) {
|
|
stopping_dist = vel_total/kP;
|
|
} else {
|
|
linear_distance = _accel_cms/(2.0f*kP*kP);
|
|
stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms);
|
|
}
|
|
|
|
// constrain stopping distance
|
|
stopping_dist = constrain_float(stopping_dist, 0, _leash);
|
|
|
|
// convert the stopping distance into a stopping point using velocity vector
|
|
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total);
|
|
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total);
|
|
}
|
|
|
|
/// get_distance_to_target - get horizontal distance to loiter target in cm
|
|
float AC_PosControl::get_distance_to_target() const
|
|
{
|
|
return _distance_to_target;
|
|
}
|
|
|
|
// is_active_xy - returns true if the xy position controller has been run very recently
|
|
bool AC_PosControl::is_active_xy() const
|
|
{
|
|
return ((hal.scheduler->millis() - _last_update_xy_ms) <= POSCONTROL_ACTIVE_TIMEOUT_MS);
|
|
}
|
|
|
|
/// init_xy_controller - initialise the xy controller
|
|
/// sets target roll angle, pitch angle and I terms based on vehicle current lean angles
|
|
/// should be called once whenever significant changes to the position target are made
|
|
/// this does not update the xy target
|
|
void AC_PosControl::init_xy_controller()
|
|
{
|
|
// reset xy controller to first step
|
|
_xy_step = 0;
|
|
|
|
// set roll, pitch lean angle targets to current attitude
|
|
_roll_target = _ahrs.roll_sensor;
|
|
_pitch_target = _ahrs.pitch_sensor;
|
|
|
|
// initialise I terms from lean angles
|
|
if (!_flags.keep_xy_I_terms) {
|
|
// reset last velocity if this controller has just been engaged or dt is zero
|
|
lean_angles_to_accel(_accel_target.x, _accel_target.y);
|
|
_pid_rate_lat.set_integrator(_accel_target.x);
|
|
_pid_rate_lon.set_integrator(_accel_target.y);
|
|
} else {
|
|
// reset keep_xy_I_term flag in case it has been set
|
|
_flags.keep_xy_I_terms = false;
|
|
}
|
|
|
|
// flag reset required in rate to accel step
|
|
_flags.reset_desired_vel_to_pos = true;
|
|
_flags.reset_rate_to_accel_xy = true;
|
|
|
|
// update update time
|
|
_last_update_xy_ms = hal.scheduler->millis();
|
|
}
|
|
|
|
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher
|
|
void AC_PosControl::update_xy_controller(bool use_desired_velocity)
|
|
{
|
|
// catch if we've just been started
|
|
uint32_t now = hal.scheduler->millis();
|
|
if ((now - _last_update_xy_ms) >= POSCONTROL_ACTIVE_TIMEOUT_MS) {
|
|
init_xy_controller();
|
|
}
|
|
|
|
// check if xy leash needs to be recalculated
|
|
calc_leash_length_xy();
|
|
|
|
// reset step back to 0 if loiter or waypoint parents have triggered an update and we completed the last full cycle
|
|
if (_flags.force_recalc_xy && _xy_step > 3) {
|
|
_flags.force_recalc_xy = false;
|
|
_xy_step = 0;
|
|
}
|
|
|
|
// run loiter steps
|
|
switch (_xy_step) {
|
|
case 0:
|
|
// capture time since last iteration
|
|
_dt_xy = (now - _last_update_xy_ms) / 1000.0f;
|
|
_last_update_xy_ms = now;
|
|
|
|
// translate any adjustments from pilot to loiter target
|
|
desired_vel_to_pos(_dt_xy);
|
|
_xy_step++;
|
|
break;
|
|
case 1:
|
|
// run position controller's position error to desired velocity step
|
|
pos_to_rate_xy(use_desired_velocity,_dt_xy);
|
|
_xy_step++;
|
|
break;
|
|
case 2:
|
|
// run position controller's velocity to acceleration step
|
|
rate_to_accel_xy(_dt_xy);
|
|
_xy_step++;
|
|
break;
|
|
case 3:
|
|
// run position controller's acceleration to lean angle step
|
|
accel_to_lean_angles();
|
|
_xy_step++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller
|
|
void AC_PosControl::init_vel_controller_xyz()
|
|
{
|
|
// force the xy velocity controller to run immediately
|
|
_vel_xyz_step = 3;
|
|
|
|
// set roll, pitch lean angle targets to current attitude
|
|
_roll_target = _ahrs.roll_sensor;
|
|
_pitch_target = _ahrs.pitch_sensor;
|
|
|
|
// reset last velocity if this controller has just been engaged or dt is zero
|
|
lean_angles_to_accel(_accel_target.x, _accel_target.y);
|
|
_pid_rate_lat.set_integrator(_accel_target.x);
|
|
_pid_rate_lon.set_integrator(_accel_target.y);
|
|
|
|
// flag reset required in rate to accel step
|
|
_flags.reset_desired_vel_to_pos = true;
|
|
_flags.reset_rate_to_accel_xy = true;
|
|
|
|
// set target position in xy axis
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
set_xy_target(curr_pos.x, curr_pos.y);
|
|
|
|
// move current vehicle velocity into feed forward velocity
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
set_desired_velocity_xy(curr_vel.x, curr_vel.y);
|
|
|
|
// record update time
|
|
_last_update_vel_xyz_ms = hal.scheduler->millis();
|
|
}
|
|
|
|
/// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher
|
|
/// velocity targets should we set using set_desired_velocity_xyz() method
|
|
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
|
|
/// throttle targets will be sent directly to the motors
|
|
void AC_PosControl::update_vel_controller_xyz()
|
|
{
|
|
// capture time since last iteration
|
|
uint32_t now = hal.scheduler->millis();
|
|
float dt_xy = (now - _last_update_vel_xyz_ms) / 1000.0f;
|
|
|
|
// check if xy leash needs to be recalculated
|
|
calc_leash_length_xy();
|
|
|
|
// we will run the horizontal component every 4th iteration (i.e. 50hz on Pixhawk, 20hz on APM)
|
|
if (dt_xy >= POSCONTROL_VEL_UPDATE_TIME) {
|
|
|
|
// record update time
|
|
_last_update_vel_xyz_ms = now;
|
|
|
|
// sanity check dt
|
|
if (dt_xy >= POSCONTROL_ACTIVE_TIMEOUT_MS) {
|
|
dt_xy = 0.0f;
|
|
}
|
|
|
|
// apply desired velocity request to position target
|
|
desired_vel_to_pos(dt_xy);
|
|
|
|
// run position controller's position error to desired velocity step
|
|
pos_to_rate_xy(true, dt_xy);
|
|
|
|
// run velocity to acceleration step
|
|
rate_to_accel_xy(dt_xy);
|
|
|
|
// run acceleration to lean angle step
|
|
accel_to_lean_angles();
|
|
}
|
|
|
|
// update altitude target
|
|
set_alt_target_from_climb_rate(_vel_desired.z, _dt);
|
|
|
|
// run z-axis position controller
|
|
update_z_controller();
|
|
}
|
|
|
|
///
|
|
/// private methods
|
|
///
|
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
|
|
/// should be called whenever the speed, acceleration or position kP is modified
|
|
void AC_PosControl::calc_leash_length_xy()
|
|
{
|
|
if (_flags.recalc_leash_xy) {
|
|
_leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP());
|
|
_flags.recalc_leash_xy = false;
|
|
}
|
|
}
|
|
|
|
/// desired_vel_to_pos - move position target using desired velocities
|
|
void AC_PosControl::desired_vel_to_pos(float nav_dt)
|
|
{
|
|
// range check nav_dt
|
|
if( nav_dt < 0 ) {
|
|
return;
|
|
}
|
|
|
|
// update target position
|
|
if (_flags.reset_desired_vel_to_pos) {
|
|
_flags.reset_desired_vel_to_pos = false;
|
|
} else {
|
|
_pos_target.x += _vel_desired.x * nav_dt;
|
|
_pos_target.y += _vel_desired.y * nav_dt;
|
|
}
|
|
}
|
|
|
|
/// pos_to_rate_xy - horizontal position error to velocity controller
|
|
/// converts position (_pos_target) to target velocity (_vel_target)
|
|
/// when use_desired_rate is set to true:
|
|
/// desired velocity (_vel_desired) is combined into final target velocity and
|
|
/// velocity due to position error is reduce to a maximum of 1m/s
|
|
void AC_PosControl::pos_to_rate_xy(bool use_desired_rate, float dt)
|
|
{
|
|
Vector3f curr_pos = _inav.get_position();
|
|
float linear_distance; // the distance we swap between linear and sqrt velocity response
|
|
float kP = _p_pos_xy.kP();
|
|
|
|
// avoid divide by zero
|
|
if (kP <= 0.0f) {
|
|
_vel_target.x = 0.0;
|
|
_vel_target.y = 0.0;
|
|
}else{
|
|
// calculate distance error
|
|
_pos_error.x = _pos_target.x - curr_pos.x;
|
|
_pos_error.y = _pos_target.y - curr_pos.y;
|
|
|
|
// constrain target position to within reasonable distance of current location
|
|
_distance_to_target = pythagorous2(_pos_error.x, _pos_error.y);
|
|
if (_distance_to_target > _leash && _distance_to_target > 0.0f) {
|
|
_pos_target.x = curr_pos.x + _leash * _pos_error.x/_distance_to_target;
|
|
_pos_target.y = curr_pos.y + _leash * _pos_error.y/_distance_to_target;
|
|
// re-calculate distance error
|
|
_pos_error.x = _pos_target.x - curr_pos.x;
|
|
_pos_error.y = _pos_target.y - curr_pos.y;
|
|
_distance_to_target = _leash;
|
|
}
|
|
|
|
// calculate the distance at which we swap between linear and sqrt velocity response
|
|
linear_distance = _accel_cms/(2.0f*kP*kP);
|
|
|
|
if (_distance_to_target > 2.0f*linear_distance) {
|
|
// velocity response grows with the square root of the distance
|
|
float vel_sqrt = safe_sqrt(2.0f*_accel_cms*(_distance_to_target-linear_distance));
|
|
_vel_target.x = vel_sqrt * _pos_error.x/_distance_to_target;
|
|
_vel_target.y = vel_sqrt * _pos_error.y/_distance_to_target;
|
|
}else{
|
|
// velocity response grows linearly with the distance
|
|
_vel_target.x = _p_pos_xy.kP() * _pos_error.x;
|
|
_vel_target.y = _p_pos_xy.kP() * _pos_error.y;
|
|
}
|
|
|
|
// decide velocity limit due to position error
|
|
float vel_max_from_pos_error;
|
|
if (use_desired_rate) {
|
|
// if desired velocity (i.e. velocity feed forward) is being used we limit the maximum velocity correction due to position error to 2m/s
|
|
vel_max_from_pos_error = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR;
|
|
}else{
|
|
// if desired velocity is not used, we allow position error to increase speed up to maximum speed
|
|
vel_max_from_pos_error = _speed_cms;
|
|
}
|
|
|
|
// scale velocity to stays within limits
|
|
float vel_total = pythagorous2(_vel_target.x, _vel_target.y);
|
|
if (vel_total > vel_max_from_pos_error) {
|
|
_vel_target.x = vel_max_from_pos_error * _vel_target.x/vel_total;
|
|
_vel_target.y = vel_max_from_pos_error * _vel_target.y/vel_total;
|
|
}
|
|
|
|
// add desired velocity (i.e. feed forward).
|
|
if (use_desired_rate) {
|
|
_vel_target.x += _vel_desired.x;
|
|
_vel_target.y += _vel_desired.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// rate_to_accel_xy - horizontal desired rate to desired acceleration
|
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
|
|
void AC_PosControl::rate_to_accel_xy(float dt)
|
|
{
|
|
const Vector3f &vel_curr = _inav.get_velocity(); // current velocity in cm/s
|
|
float accel_total; // total acceleration in cm/s/s
|
|
float lat_i, lon_i;
|
|
|
|
// reset last velocity target to current target
|
|
if (_flags.reset_rate_to_accel_xy) {
|
|
_vel_last.x = _vel_target.x;
|
|
_vel_last.y = _vel_target.y;
|
|
_flags.reset_rate_to_accel_xy = false;
|
|
}
|
|
|
|
// feed forward desired acceleration calculation
|
|
if (dt > 0.0f) {
|
|
if (!_flags.freeze_ff_xy) {
|
|
_accel_feedforward.x = (_vel_target.x - _vel_last.x)/dt;
|
|
_accel_feedforward.y = (_vel_target.y - _vel_last.y)/dt;
|
|
} else {
|
|
// stop the feed forward being calculated during a known discontinuity
|
|
_flags.freeze_ff_xy = false;
|
|
}
|
|
} else {
|
|
_accel_feedforward.x = 0.0f;
|
|
_accel_feedforward.y = 0.0f;
|
|
}
|
|
|
|
// store this iteration's velocities for the next iteration
|
|
_vel_last.x = _vel_target.x;
|
|
_vel_last.y = _vel_target.y;
|
|
|
|
// calculate velocity error
|
|
_vel_error.x = _vel_target.x - vel_curr.x;
|
|
_vel_error.y = _vel_target.y - vel_curr.y;
|
|
|
|
// get current i term
|
|
lat_i = _pid_rate_lat.get_integrator();
|
|
lon_i = _pid_rate_lon.get_integrator();
|
|
|
|
// update i term if we have not hit the accel or throttle limits OR the i term will reduce
|
|
if ((!_limit.accel_xy && !_motors.limit.throttle_upper) || ((lat_i>0&&_vel_error.x<0)||(lat_i<0&&_vel_error.x>0))) {
|
|
lat_i = _pid_rate_lat.get_i(_vel_error.x, dt);
|
|
}
|
|
if ((!_limit.accel_xy && !_motors.limit.throttle_upper) || ((lon_i>0&&_vel_error.y<0)||(lon_i<0&&_vel_error.y>0))) {
|
|
lon_i = _pid_rate_lon.get_i(_vel_error.y, dt);
|
|
}
|
|
|
|
// combine feed forward accel with PID output from velocity error
|
|
_accel_target.x = _accel_feedforward.x + _pid_rate_lat.get_p(_vel_error.x) + lat_i + _pid_rate_lat.get_d(_vel_error.x, dt);
|
|
_accel_target.y = _accel_feedforward.y + _pid_rate_lon.get_p(_vel_error.y) + lon_i + _pid_rate_lon.get_d(_vel_error.y, dt);
|
|
|
|
// scale desired acceleration if it's beyond acceptable limit
|
|
// To-Do: move this check down to the accel_to_lean_angle method?
|
|
accel_total = pythagorous2(_accel_target.x, _accel_target.y);
|
|
if (accel_total > POSCONTROL_ACCEL_XY_MAX && accel_total > 0.0f) {
|
|
_accel_target.x = POSCONTROL_ACCEL_XY_MAX * _accel_target.x/accel_total;
|
|
_accel_target.y = POSCONTROL_ACCEL_XY_MAX * _accel_target.y/accel_total;
|
|
_limit.accel_xy = true; // unused
|
|
} else {
|
|
// reset accel limit flag
|
|
_limit.accel_xy = false;
|
|
}
|
|
}
|
|
|
|
/// accel_to_lean_angles - horizontal desired acceleration to lean angles
|
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
|
|
void AC_PosControl::accel_to_lean_angles()
|
|
{
|
|
float accel_right, accel_forward;
|
|
float lean_angle_max = _attitude_control.lean_angle_max();
|
|
|
|
// To-Do: add 1hz filter to accel_lat, accel_lon
|
|
|
|
// rotate accelerations into body forward-right frame
|
|
accel_forward = _accel_target.x*_ahrs.cos_yaw() + _accel_target.y*_ahrs.sin_yaw();
|
|
accel_right = -_accel_target.x*_ahrs.sin_yaw() + _accel_target.y*_ahrs.cos_yaw();
|
|
|
|
// update angle targets that will be passed to stabilize controller
|
|
_roll_target = constrain_float(fast_atan(accel_right*_ahrs.cos_pitch()/(GRAVITY_MSS * 100))*(18000/M_PI), -lean_angle_max, lean_angle_max);
|
|
_pitch_target = constrain_float(fast_atan(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI),-lean_angle_max, lean_angle_max);
|
|
}
|
|
|
|
// get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
|
void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const
|
|
{
|
|
// rotate our roll, pitch angles into lat/lon frame
|
|
accel_x_cmss = (GRAVITY_MSS * 100) * (-(_ahrs.cos_yaw() * _ahrs.sin_pitch() / max(_ahrs.cos_pitch(),0.5)) - _ahrs.sin_yaw() * _ahrs.sin_roll() / max(_ahrs.cos_roll(),0.5));
|
|
accel_y_cmss = (GRAVITY_MSS * 100) * (-(_ahrs.sin_yaw() * _ahrs.sin_pitch() / max(_ahrs.cos_pitch(),0.5)) + _ahrs.cos_yaw() * _ahrs.sin_roll() / max(_ahrs.cos_roll(),0.5));
|
|
}
|
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
|
|
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const
|
|
{
|
|
float leash_length;
|
|
|
|
// sanity check acceleration and avoid divide by zero
|
|
if (accel_cms <= 0.0f) {
|
|
accel_cms = POSCONTROL_ACCELERATION_MIN;
|
|
}
|
|
|
|
// avoid divide by zero
|
|
if (kP <= 0.0f) {
|
|
return POSCONTROL_LEASH_LENGTH_MIN;
|
|
}
|
|
|
|
// calculate leash length
|
|
if(speed_cms <= accel_cms / kP) {
|
|
// linear leash length based on speed close in
|
|
leash_length = speed_cms / kP;
|
|
}else{
|
|
// leash length grows at sqrt of speed further out
|
|
leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms));
|
|
}
|
|
|
|
// ensure leash is at least 1m long
|
|
if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) {
|
|
leash_length = POSCONTROL_LEASH_LENGTH_MIN;
|
|
}
|
|
|
|
return leash_length;
|
|
}
|