ardupilot/AntennaTracker/GCS_Mavlink.pde

880 lines
25 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS)
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) return false
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STOP:
break;
case SCAN:
case AUTO:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_ANTENNA_TRACKER,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
hal.scheduler->millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time = gps.last_fix_time_ms();
} else {
fix_time = hal.scheduler->millis();
}
const Vector3f &vel = gps.velocity();
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
current_loc.alt * 10, // millimeters above sea level
0,
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
mavlink_msg_servo_output_raw_send(
chan,
hal.scheduler->micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
0,
hal.i2c->lockup_count());
}
static void NOINLINE send_waypoint_request(mavlink_channel_t chan)
{
gcs[chan-MAVLINK_COMM_0].queued_waypoint_send();
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
0,
nav_status.pitch,
nav_status.bearing,
nav_status.bearing,
nav_status.distance,
nav_status.altitude_difference,
0,
0);
}
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
sitl.simstate_send(chan);
#endif
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK::try_send_message(enum ap_message id)
{
uint16_t txspace = comm_get_txspace(chan);
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
send_heartbeat(chan);
return true;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
gcs[chan-MAVLINK_COMM_0].send_gps_raw(gps);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
gcs[chan-MAVLINK_COMM_0].send_radio_in(0);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
gcs[chan-MAVLINK_COMM_0].send_raw_imu(ins, compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
gcs[chan-MAVLINK_COMM_0].send_scaled_pressure(barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(ins, compass, barometer);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
gcs[chan-MAVLINK_COMM_0].queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
send_waypoint_request(chan);
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
gcs[chan-MAVLINK_COMM_0].send_ahrs(ahrs);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_SERVO_OUT:
case MSG_EXTENDED_STATUS1:
case MSG_EXTENDED_STATUS2:
case MSG_RETRY_DEFERRED:
case MSG_CURRENT_WAYPOINT:
case MSG_VFR_HUD:
case MSG_SYSTEM_TIME:
case MSG_LIMITS_STATUS:
case MSG_FENCE_STATUS:
case MSG_WIND:
case MSG_RANGEFINDER:
case MSG_TERRAIN:
case MSG_BATTERY2:
case MSG_CAMERA_FEEDBACK:
case MSG_MOUNT_STATUS:
case MSG_OPTICAL_FLOW:
case MSG_GIMBAL_REPORT:
break; // just here to prevent a warning
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
if (stream_num >= NUM_STREAMS) {
return false;
}
float rate = (uint8_t)streamRates[stream_num].get();
// send at a much lower rate during parameter sends
if (_queued_parameter != NULL) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) -1 + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_GPS_RAW);
}
if (stream_trigger(STREAM_POSITION)) {
send_message(MSG_LOCATION);
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_IN);
send_message(MSG_RADIO_OUT);
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_SIMSTATE);
}
}
/*
We eavesdrop on MAVLINK_MSG_ID_GLOBAL_POSITION_INT and
MAVLINK_MSG_ID_SCALED_PRESSUREs
*/
void mavlink_snoop(const mavlink_message_t* msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
{
// decode
mavlink_global_position_int_t packet;
mavlink_msg_global_position_int_decode(msg, &packet);
tracking_update_position(packet);
break;
}
case MAVLINK_MSG_ID_SCALED_PRESSURE:
{
// decode
mavlink_scaled_pressure_t packet;
mavlink_msg_scaled_pressure_decode(msg, &packet);
tracking_update_pressure(packet);
break;
}
}
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
switch (msg->msgid) {
// If we are currently operating as a proxy for a remote,
// alas we have to look inside each packet to see if its for us or for the remote
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
handle_request_data_stream(msg, true);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
handle_param_set(msg, NULL);
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
break;
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_PREFLIGHT_CALIBRATION:
{
if (packet.param1 == 1 ||
packet.param2 == 1) {
calibrate_ins();
} else if (packet.param3 == 1) {
init_barometer();
// zero the altitude difference on next baro update
nav_status.need_altitude_calibration = true;
}
if (packet.param4 == 1) {
// Cant trim radio
}
#if !defined( __AVR_ATmega1280__ )
if (packet.param5 == 1) {
float trim_roll, trim_pitch;
AP_InertialSensor_UserInteract_MAVLink interact(this);
if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
}
#endif
result = MAV_RESULT_ACCEPTED;
break;
}
case MAV_CMD_COMPONENT_ARM_DISARM:
if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) {
if (packet.param1 == 1.0f) {
arm_servos();
result = MAV_RESULT_ACCEPTED;
} else if (packet.param1 == 0.0f) {
disarm_servos();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_UNSUPPORTED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
// mavproxy/mavutil sends this when auto command is entered
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
{
if (packet.param1 == 1 || packet.param1 == 3) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(packet.param1 == 3);
result = MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
if (packet.param1 == 1) {
gcs[chan-MAVLINK_COMM_0].send_autopilot_version();
result = MAV_RESULT_ACCEPTED;
}
break;
}
default:
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
// When mavproxy 'wp sethome'
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(msg, &packet);
if (packet.start_index == 0)
{
// New home at wp index 0. Ask for it
waypoint_receiving = true;
waypoint_request_i = 0;
waypoint_request_last = 0;
send_message(MSG_NEXT_WAYPOINT);
waypoint_receiving = true;
}
break;
}
// XXX receive a WP from GCS and store in EEPROM if it is HOME
case MAVLINK_MSG_ID_MISSION_ITEM:
{
// decode
mavlink_mission_item_t packet;
uint8_t result = MAV_MISSION_ACCEPTED;
mavlink_msg_mission_item_decode(msg, &packet);
struct Location tell_command = {};
switch (packet.frame)
{
case MAV_FRAME_MISSION:
case MAV_FRAME_GLOBAL:
{
tell_command.lat = 1.0e7f*packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f*packet.y; // in as DD converted to * t7
tell_command.alt = packet.z*1.0e2f; // in as m converted to cm
tell_command.options = 0; // absolute altitude
break;
}
#ifdef MAV_FRAME_LOCAL_NED
case MAV_FRAME_LOCAL_NED: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng;
tell_command.alt = -packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
#ifdef MAV_FRAME_LOCAL
case MAV_FRAME_LOCAL: // local (relative to home position)
{
tell_command.lat = 1.0e7f*ToDeg(packet.x/
(RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat;
tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng;
tell_command.alt = packet.z*1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
{
tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2f;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
break;
}
default:
result = MAV_MISSION_UNSUPPORTED_FRAME;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) {
result = MAV_MISSION_ERROR;
goto mission_failed;
}
// check if this is the HOME wp
if (packet.seq == 0) {
set_home(tell_command); // New home in EEPROM
send_text_P(SEVERITY_LOW,PSTR("new HOME received"));
waypoint_receiving = false;
}
mission_failed:
// we are rejecting the mission/waypoint
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
break;
}
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(msg, &packet);
tracking_manual_control(packet);
break;
}
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
{
// decode
mavlink_global_position_int_t packet;
mavlink_msg_global_position_int_decode(msg, &packet);
tracking_update_position(packet);
break;
}
case MAVLINK_MSG_ID_SCALED_PRESSURE:
{
// decode
mavlink_scaled_pressure_t packet;
mavlink_msg_scaled_pressure_decode(msg, &packet);
tracking_update_pressure(packet);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
handle_set_mode(msg, mavlink_set_mode);
break;
}
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg, gps);
break;
#endif
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
gcs[chan-MAVLINK_COMM_0].send_autopilot_version();
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised) return;
in_mavlink_delay = true;
uint32_t tnow = hal.scheduler->millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].update(NULL);
}
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_text_P(severity, str);
}
}
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message_P(str);
#endif
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs[0].pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs[0].pending_status.text,
sizeof(gcs[0].pending_status.text), fmt, arg_list);
va_end(arg_list);
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message(gcs[0].pending_status.text);
#endif
gcs[0].send_message(MSG_STATUSTEXT);
for (uint8_t i=1; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].pending_status = gcs[0].pending_status;
gcs[i].send_message(MSG_STATUSTEXT);
}
}
}
/**
retry any deferred messages
*/
static void gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
}